Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2021
Historique:
entrez: 31 7 2021
pubmed: 1 8 2021
medline: 4 8 2021
Statut: ppublish

Résumé

Curcumin, the main active constituent of turmeric (Curcuma longa L.), is a naturally occurring phenolic compound with a wide variety of pharmacological activities. Although it has multiple pharmaceutical properties, its bioavailability and industrial usage are hindered due to rapid hydrolysis and low water solubility. Due to the growing market of curcumin, exact determination of curcumin in trade and human biological samples is important for monitoring therapeutic actions. Different nanomaterials have been suggested for sensing curcumin; and in this case, carbon-based nanomaterials (CNMs) are one of the most outstanding developments in nanomedicine, biosensing, and regenerative medicine. There are a considerable number of reports which have shown interesting potential of CNMs-based biosensors in the sensitive and selective detection of curcumin. Therefore, this review aims to increase understanding the interaction of curcumin with CNMs in the context of biosensing.

Identifiants

pubmed: 34331684
doi: 10.1007/978-3-030-56153-6_4
doi:

Substances chimiques

Carbon 7440-44-0
Curcumin IT942ZTH98

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

55-74

Informations de copyright

© 2021. The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19(12):20091–20112
pubmed: 25470276 pmcid: 6270789 doi: 10.3390/molecules191220091
Lestari ML, Indrayanto G (2014) Curcumin. Profiles Drug Subst Excip Relat Methodol 39:113–204
pubmed: 24794906 doi: 10.1016/B978-0-12-800173-8.00003-9
Mahady GB, Pendland SL, Yun G, Lu ZZ (2002) Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res 22(6C):4179–4181
pubmed: 12553052
Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326(2):472–474
pubmed: 15582601 doi: 10.1016/j.bbrc.2004.11.051
Vera-Ramirez L, Perez-Lopez P, Varela-Lopez A, Ramirez-Tortosa M, Battino M, Quiles JL (2013) Curcumin and liver disease. Biofactors 39(1):88–100
pubmed: 23303639 doi: 10.1002/biof.1057
Wright LE, Frye JB, Gorti B, Timmermann BN, Funk JL (2013) Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr Pharm Des 19(34):6218–6225
pubmed: 23448448 pmcid: 3883055 doi: 10.2174/1381612811319340013
Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1A):363–398
pubmed: 12680238 pmcid: 12680238
Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218
pubmed: 23143785 doi: 10.1208/s12248-012-9432-8 pmcid: 23143785
Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors 43(3):331–346
Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233(2):830–848
pubmed: 28059453 doi: 10.1002/jcp.25778 pmcid: 28059453
Iranshahi M, Sahebkar A, Takasaki M, Konoshima T, Tokuda H (2009) Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur J Cancer Prev 18(5):412–415
pubmed: 19531956 doi: 10.1097/CEJ.0b013e32832c389e pmcid: 19531956
Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2017) Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res 67(4):244–251
doi: 10.1055/s-0043-100019
Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A (2020) The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors. 46(3):309–325. https://doi.org/10.1002/biof.1597. Epub 2019 Dec 17. PMID: 31846136
Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345
Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A (2018) Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol 233(1):141–152. https://doi.org/10.1002/jcp.25756 . Epub 2017 Jun 6. PMID: 28012169
Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995. https://doi.org/10.1002/ptr.6054 . Epub 2018 Feb 26. PMID: 29480523
Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59
pubmed: 18662800 doi: 10.1016/j.biocel.2008.06.010 pmcid: 18662800
Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, Salehizadeh L, Rahmani S, Behnam B et al (2020) Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Complement Ther Med 49:102322.  https://doi.org/10.1016/j.ctim.2020.102322  
Karimian MS, Pirro M, Majeed M, Sahebkar A (2017) Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 33:55–63
pubmed: 27743775 doi: 10.1016/j.cytogfr.2016.10.001 pmcid: 27743775
Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101
pubmed: 28799796 doi: 10.1080/10408398.2017.1358139 pmcid: 28799796
Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendía LE, Majeed M et al (2016) Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother 82:578–582
pubmed: 27470399 doi: 10.1016/j.biopha.2016.05.037 pmcid: 27470399
Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL et al (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61(3):1058–1064
pubmed: 11221833
Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML et al (2002) Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomark Prev 11(1):105–111
Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854
pubmed: 15501961 doi: 10.1158/1078-0432.CCR-04-0744
Teradal NL, Jelinek R (2017) Carbon nanomaterials in biological studies and biomedicine. Adv Healthc Mater 6(17). https://doi.org/10.1002/adhm.201700574
Mohajeri M, Behnam B, Sahebkar A (2019) Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J Cell Physiol 234(1):298–319
doi: 10.1002/jcp.26899
Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353
pubmed: 16934866 doi: 10.1016/j.biomaterials.2006.07.044
Wang Z, Dai Z (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7(15):6420–6431
pubmed: 25805626 doi: 10.1039/C5NR00585J
Rezaee M, Behnam B, Banach M, Sahebkar A (2018) The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol Adv 36(8):2232–2247
pubmed: 30342084 doi: 10.1016/j.biotechadv.2018.10.010
Mohajeri M, Behnam B, Barreto GE, Sahebkar A (2019) Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer’s disease? Pharmacol Res 143:186–203
pubmed: 30943430 doi: 10.1016/j.phrs.2019.03.023
Rauti R, Musto M, Bosi S, Prato M, Ballerini L (2018) Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon 143:430–446
doi: 10.1016/j.carbon.2018.11.026
Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191
pubmed: 17330084 doi: 10.1038/nmat1849
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710
pubmed: 19145232 pmcid: 19145232 doi: 10.1038/nature07719
Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274
pubmed: 18654522 doi: 10.1038/nnano.2008.83
Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240
pubmed: 20023850 doi: 10.1039/B917103G
Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212
pubmed: 21397350 pmcid: 7114214 doi: 10.1016/j.tibtech.2011.01.008
Wang J, Qiu J (2016) A review of carbon dots in biological applications. J Mater Sci 51(10):4728–4738
doi: 10.1007/s10853-016-9797-7
Jaleel JA, Pramod K (2018) Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 269:302–321
pubmed: 29170139 doi: 10.1016/j.jconrel.2017.11.027
Marković Z, Kepić D, Matijašević D, Pavlović V, Jovanović S, Stanković N et al (2017) Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids. RSC Adv 7(57):36081–36092
doi: 10.1039/C7RA05027E
Roșu MC, Páll E, Socaci C, Măgeruşan L, Pogăcean F, Coroş M et al (2017) Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts. Process Biochem 52:243–249
doi: 10.1016/j.procbio.2016.10.002
Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809
pubmed: 17900536 doi: 10.1016/j.bcp.2007.08.016 pmcid: 17900536
Marković ZM, Prekodravac JR, Tošić DD, Holclajtner-Antunović ID, Milosavljević MS, Dramićanin MD et al (2015) Facile synthesis of water-soluble curcumin nanocrystals. J Serb Chem Soc 80(1):63–72
doi: 10.2298/JSC140819117M
Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NFκB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. J Parenter Enter Nutr 30(1):45–51
doi: 10.1177/014860710603000145
Hatcher H, Planalp R, Cho J, Torti F, Torti S (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65(11):1631–1652
pubmed: 18324353 pmcid: 4686230 doi: 10.1007/s00018-008-7452-4
Huang YS, Hsieh T-J, Lu CY (2015) Simple analytical strategy for MALDI-TOF-MS and nanoUPLC-MS/MS: quantitating curcumin in food condiments and dietary supplements and screening of acrylamide-induced ROS protein indicators reduced by curcumin. Food Chem 174:571–576
pubmed: 25529721 doi: 10.1016/j.foodchem.2014.11.115
Mohajeri M, Behnam B, Cicero AFG, Sahebkar A (2018) Protective effects of curcumin against aflatoxicosis: A comprehensive review. J Cell Physiol 233(4):3552–3577
pubmed: 29034472 doi: 10.1002/jcp.26212
Ziyatdinova GK, Nizamova AM, Budnikov HC (2012) Voltammetric determination of curcumin in spices. J Anal Chem 67(6):591–594
doi: 10.1134/S1061934812040132
Cheng J, Weijun K, Yun L, Jiabo W, Haitao W, Qingmiao L et al (2010) Development and validation of UPLC method for quality control of Curcuma longa Linn.: fast simultaneous quantitation of three curcuminoids. J Pharm Biomed Anal 53(1):43–49
pubmed: 20395103 doi: 10.1016/j.jpba.2010.03.021
Tayyem RF, Heath DD, Al-Delaimy WK, Rock CL (2006) Curcumin content of turmeric and curry powders. Nutr Cancer 55(2):126–131
pubmed: 17044766 doi: 10.1207/s15327914nc5502_2
Dhakal S, Chao K, Schmidt W, Qin J, Kim M, Chan D (2016) Evaluation of turmeric powder adulterated with Metanil yellow using FT-Raman and FT-IR spectroscopy. Foods 5(2):E36. https://doi.org/10.3390/foods5020036
doi: 10.3390/foods5020036 pubmed: 28231130
Govindarajan VS (1980) Turmeric—chemistry, technology, and quality. Crit Rev Food Sci Nutr 12(3):199–301
pubmed: 6993103 doi: 10.1080/10408398009527278
Gleason K, Shine JP, Shobnam N, Rokoff LB, Suchanda HS, Ibne Hasan MOS et al (2014) Contaminated turmeric is a potential source of lead exposure for children in Rural Bangladesh. J Environ Public Health 2014:730636. https://doi.org/10.1155/2014/730636
doi: 10.1155/2014/730636 pubmed: 25214856 pmcid: 4158309
Nasr M, Rahman A, Hamdy M (2019) Simultaneous determination of curcumin and resveratrol in lipidic nanoemulsion formulation and rat plasma using HPLC: optimization and application to real samples. J AOAC Int 102(4):1095–1101
pubmed: 30651158 doi: 10.5740/jaoacint.18-0269
Gupta NK, Nahata A, Dixit VK (2010) Development of Spectrofluorimetric Method for the determination of curcumin. Asian J Trad Med 5(1):12–18
Wang F, Wu X, Wang F, Liu S, Jia Z, Yang J (2006) The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle. J Fluoresc 16(1):53–59
pubmed: 16432763 doi: 10.1007/s10895-005-0025-0
Li K, Li Y, Yang L, Wang L, Ye B (2014) The electrochemical characterization of curcumin and its selective detection in Curcuma using a graphene-modified electrode. Anal Methods 6(19):7801–7808
doi: 10.1039/C4AY01492H
Ramalingam P, Ko YT (2014) A validated LC-MS/MS method for quantitative analysis of curcumin in mouse plasma and brain tissue and its application in pharmacokinetic and brain distribution studies. J Chromatogr B Analyt Technol Biomed Life Sci 969:101–108
pubmed: 25168793 doi: 10.1016/j.jchromb.2014.08.009
Arslan E, Çakır S (2014) A novel palladium nanoparticles-polyproline-modified graphite electrode and its application for determination of curcumin. J Solid State Electrochem 18(6):1611–1620
doi: 10.1007/s10008-014-2382-6
Atar N, Eren T, Demirdögen B, Yola ML, Çağlayan MO (2015) Silver, gold, and silver@gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation. Ionics 21:2285–2293
doi: 10.1007/s11581-015-1395-1
Atar N, Eren T, Yola ML (2015) Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide. Thin Solid Films 590:156–162
doi: 10.1016/j.tsf.2015.07.075
Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B Chem 149(1):252–258
doi: 10.1016/j.snb.2010.05.019
Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK et al (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28(12):1937–1955
pubmed: 21979811 pmcid: 3604998 doi: 10.1039/c1np00051a
Gupta VK, Jain AK, Singh LP, Khurana U (1997) Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Anal Chim Acta 355(1):33–41
doi: 10.1016/S0003-2670(97)81609-1
Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal Biochem 407(1):79–88
pubmed: 20678464 doi: 10.1016/j.ab.2010.07.027
Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31
doi: 10.1016/j.electacta.2013.12.028
Hatamie S, Akhavan O, Sadrnezhaad SK, Ahadian MM, Shirolkar MM, Wang HQ (2015) Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater Sci Eng C Mater Biol Appl 55:482–489
pubmed: 26117780 doi: 10.1016/j.msec.2015.05.077
Lungu A, Sandu I, Boscornea C, Tomas S, Mihailciuc C (2010) Electrochemical study of curcumin and bisdemethoxycurcumin on activated glassy carbon electrode. Rev Roum Chim 55(2):109–115
Yousef Elahi M, Heli H, Bathaie SZ, Mousavi MF (2007) Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode. J Solid State Electrochem 11(2):273–282
doi: 10.1007/s10008-006-0104-4
Ciszewski A (1995) Catalytic oxidation of methanol on a glassy carbon electrode electrochemically modified by a conductive NiII-curcumin film. Electroanalysis 7(12):1132–1135
doi: 10.1002/elan.1140071207
Gibson CT, Carnally S, Roberts CJ (2007) Attachment of carbon nanotubes to atomic force microscope probes. Ultramicroscopy 107(10–11):1118–1122
pubmed: 17644251 doi: 10.1016/j.ultramic.2007.02.045
Antaris AL, Robinson JT, Yaghi OK, Hong G, Diao S, Luong R et al (2013) Ultra-low doses of chirality sorted (6, 5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 7(4):3644–3652
pubmed: 23521224 doi: 10.1021/nn4006472
Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32(1):347–375
doi: 10.1146/annurev.matsci.32.112601.134925
Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730
pubmed: 27642366 pmcid: 27642366 doi: 10.1038/nphoton.2014.166
Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036
pubmed: 23339685 doi: 10.1021/ja3089923
Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14(7–8):316–323
doi: 10.1016/S1369-7021(11)70161-4
Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120
pubmed: 20174481 pmcid: 2824900 doi: 10.1007/s12274-009-9009-8
Wang H, Dai H (2013) Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem Soc Rev 42(7):3088–3113
pubmed: 23361617 doi: 10.1039/c2cs35307e
Harris PJF (2009) Carbon nanotube science: synthesis, properties and applications, 1st edn. Cambridge University Press, Cambridge
doi: 10.1017/CBO9780511609701
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58
doi: 10.1038/354056a0
Heister E, Neves V, Lamprecht C, Silva SRP, Coley HM, McFadden J (2012) Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon 50(2):622–632
doi: 10.1016/j.carbon.2011.08.074
Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758(3):404–412
pubmed: 16307724 doi: 10.1016/j.bbamem.2005.10.008
Tsai HC, Lin JY, Maryani F, Huang CC, Imae T (2013) Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers. Int J Nanomedicine 8:4427–4440
pubmed: 24277987 pmcid: 3838018 doi: 10.2147/IJN.S53636
Behnam B, Shier WT, Nia AH, Abnous K, Ramezani M (2013) Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm 454(1):204–215
pubmed: 23856161 doi: 10.1016/j.ijpharm.2013.06.057
Hashem Nia A, Behnam B, Taghavi S, Oroojalian F, Eshghi H, Shier WT et al (2017) Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate– polyethylenimine conjugates as non-viral gene carriers. Med Chem Comm 8(2):364–375
doi: 10.1039/C6MD00481D
Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43(39):5242–5246
pubmed: 15455428 doi: 10.1002/anie.200460437
Shi Kam NW, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 118(4):591–595
doi: 10.1002/ange.200503389
Wu Y, Phillips JA, Liu H, Yang R, Tan W (2008) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2(10):2023–2028
pubmed: 19206447 pmcid: 2658617 doi: 10.1021/nn800325a
Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T et al (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12(16):4933–4939
pubmed: 16914582 doi: 10.1158/1078-0432.CCR-05-2831
Shi Kam NW, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127(16):6021–6026
doi: 10.1021/ja050062v
Pantarotto D, Briand J-P, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 1:16–17
doi: 10.1039/b311254c
Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M et al (2003) Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc 125(20):6160–6164
pubmed: 12785847 doi: 10.1021/ja034342r
Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand JP et al (2005) Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J Am Chem Soc 127(1):58–59
pubmed: 15631447 doi: 10.1021/ja044293y
Partidos CD, Hoebeke J, Wieckowski S, Chaloin O, Bianco A, Moreau E et al (2009) Immunomodulatory consequences of ODN CpG-polycation complexes. Methods 49(4):328–333
pubmed: 19303048 doi: 10.1016/j.ymeth.2009.03.005
Chaudhuri P, Soni S, Sengupta S (2010) Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 21(2):025102
pubmed: 19955607 doi: 10.1088/0957-4484/21/2/025102
Heister E, Neves V, Tîlmaciu C, Lipert K, Beltrán VS, Coley HM et al (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9):2152–2160
doi: 10.1016/j.carbon.2009.03.057
Li H, Zhang N, Hao Y, Wang Y, Jia S, Zhang H et al (2014) Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv 21(5):379–387
pubmed: 24160816 doi: 10.3109/10717544.2013.848246
Li R, Wu R, Zhao L, Wu M, Yang L, Zou H (2010) P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4(3):1399–1408
pubmed: 20148593 doi: 10.1021/nn9011225
Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C et al (2010) Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chem Commun (Camb) 46(9):1494–1496
doi: 10.1039/B923560D
Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H et al (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181(3):182–189
pubmed: 18760340 doi: 10.1016/j.toxlet.2008.07.020
Shiraki T, Dawn A, Le TNL, Tsuchiya Y, S-i T, Shinkai S (2011) Heat and light dual switching of a single-walled carbon nanotube/thermo-responsive helical polysaccharide complex: a new responsive system applicable to photodynamic therapy. Chem Commun (Camb) 47(25):7065–7067
doi: 10.1039/c1cc11288k
De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z et al (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562
pubmed: 18772918 doi: 10.1038/nnano.2008.231
Shi Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102(33):11600–11605
doi: 10.1073/pnas.0502680102
Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4(10):688–694
pubmed: 19809462 pmcid: 3663138 doi: 10.1038/nnano.2009.231
Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14(2):021009. https://doi.org/10.1117/1.3078803
doi: 10.1117/1.3078803 pubmed: 19405722
Mohammadi E, Zeinali M, Mohammadi-Sardoo M, Iranpour M, Behnam B, Mandegary A (2020) The effects of functionalization of carbon nanotubes on toxicological parameters in mice. Hum Exp Toxicol 39(9):096032711989998. https://doi.org/10.1177/0960327119899988
doi: 10.1177/0960327119899988
Ahmadi H, Ramezani M, Yazdian-Robati R, Behnam B, Razavi Azarkhiavi K, Hashem Nia A et al (2017) Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach. Chem Biol Interact 275:196–209
pubmed: 28807745 doi: 10.1016/j.cbi.2017.08.004
Lin Y, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1–2):145–149
doi: 10.1002/elan.200302933
Qu F, Yang M, Jiang J, Shen G, Yu R (2005) Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal Biochem 344(1):108–114
pubmed: 16039599 doi: 10.1016/j.ab.2005.06.007
Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang YL, Wang Q (2006) Carbon nanotube DNA sensor and sensing mechanism. Nano Lett 6(8):1632–1636
pubmed: 16895348 doi: 10.1021/nl060613v
Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q et al (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3(5):597–602
doi: 10.1021/nl0340677
Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD et al (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128(34):11199–11205
pubmed: 16925438 pmcid: 2482602 doi: 10.1021/ja062117e
Justino CIL, Rocha-Santos TAP, Duarte AC (2013) Advances in point-of-care technologies with biosensors based on carbon nanotubes. TrAC Trends Anal Chem 45:24–36
doi: 10.1016/j.trac.2012.12.012
Espinosa EH, Ionescu R, Chambon B, Bedis G, Sotter E, Bittencourt C et al (2007) Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing. Sensors Actuators B Chem 127(1):137–142
doi: 10.1016/j.snb.2007.07.108
Van Hieu N, Thuy LTB, Chien ND (2008) Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sensors Actuators B Chem 129(2):888–895
doi: 10.1016/j.snb.2007.09.088
Mooney E, Dockery P, Greiser U, Murphy M, Barron V (2008) Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett 8(8):2137–2143
pubmed: 18624387 doi: 10.1021/nl073300o
Venkatesan J, Qian Z-J, Ryu B, Ashok Kumar N, Kim SK (2011) Preparation and characterization of carbon nanotube-grafted-chitosan – Natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83(2):569–577
doi: 10.1016/j.carbpol.2010.08.019
Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567
pubmed: 16522063 doi: 10.1021/nl051861e
Jiang F, Wang Y, Hu X, Shao N, Na N, Delanghe JR et al (2010) Carbon nanotubes-assisted polyacrylamide gel electrophoresis for enhanced separation of human serum proteins and application in liverish diagnosis. J Sep Sci 33(21):3393–3399
pubmed: 20928923 doi: 10.1002/jssc.201000383
Wang Z, Luo G, Chen J, Xiao S, Wang Y (2003) Carbon nanotubes as separation carrier in capillary electrophoresis. Electrophoresis 24(24):4181–4188
pubmed: 14679565 doi: 10.1002/elps.200305575
Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5(1):199–208
pubmed: 21141979 doi: 10.1021/nn1023522
Schiffman JD, Elimelech M (2011) Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. ACS Appl Mater Interfaces 3(2):462–468
pubmed: 21261276 doi: 10.1021/am101043y
Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45(8):3672–3679
pubmed: 21388183 doi: 10.1021/es2000062
Holzinger M, Baur J, Haddad R, Wang X, Cosnier S (2011) Multiple functionalization of single-walled carbon nanotubes by dip coating. Chem Commun (Camb) 47(8):2450–2452
doi: 10.1039/C0CC03928D
Mundra RV, Wu X, Sauer J, Dordick JS, Kane RS (2014) Nanotubes in biological applications. Curr Opin Biotechnol 28:25–32
pubmed: 24832071 doi: 10.1016/j.copbio.2013.10.012
Münzer A, Heimgreiter M, Melzer K, Weise A, Fabel B, Abdellah A et al (2013) Back-gated spray-deposited carbon nanotube thin film transistors operated in electrolytic solutions: an assessment towards future biosensing applications. J Mater Chem B 1(31):3797–3802
pubmed: 32261132 doi: 10.1039/c3tb20170h
Tîlmaciu C-M, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:59. https://doi.org/10.3389/fchem.2015.00059
doi: 10.3389/fchem.2015.00059 pubmed: 26579509 pmcid: 4621484
Zheng L, Song JF (2009) Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sensors Actuators B Chem 135(2):650–655
doi: 10.1016/j.snb.2008.09.035
Krishna Kumar K, Devendiran M, Jyothithamizhanban, Narayanan SS (2014) Curcumin/MWCNT modified graphite electrode for electrochemical determination of BHA. Int J Innov Res in Sci Eng 2(special issue 1):654–659
Daneshgar P, Norouzi P, Moosavi-Movahedi AA, Ganjali MR, Haghshenas E, Dousty F et al (2009) Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. J Appl Electrochem 39(10):1983
doi: 10.1007/s10800-009-9908-0
Jain R, Haque A, Verma A (2017) Voltammetric quantification of surfactant stabilized curcumin at MWCNT/GCE sensor. J Mol Liq 230:600–607
doi: 10.1016/j.molliq.2017.01.051
Chaisiwamongkhol K, Ngamchuea K, Batchelor-McAuley C, Compton RG (2017) Multiwalled carbon nanotube modified electrodes for the adsorptive stripping voltammetric determination and quantification of curcumin in turmeric. Electroanalysis 29(4):1049–1055
doi: 10.1002/elan.201600670
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669
doi: 10.1126/science.1102896
Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D et al (2014) Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev 46(2):232–246
pubmed: 24506522 doi: 10.3109/03602532.2014.883406
Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534
pubmed: 19541989 doi: 10.1126/science.1158877
Kostarelos K, Novoselov KS (2014) Exploring the interface of graphene and biology. Science 344(6181):261–263
pubmed: 24744363 doi: 10.1126/science.1246736
Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200
pubmed: 23060189 doi: 10.1038/nature11458
Katsnelson MI, Novoselov KS (2007) Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun 143(1):3–13
doi: 10.1016/j.ssc.2007.02.043
Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200
doi: 10.1038/nature04233
Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204
pubmed: 16281031 doi: 10.1038/nature04235
Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503
pubmed: 17944526 doi: 10.1021/nl072090c
Liang X, Fu Z, Chou SY (2007) Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett 7(12):3840–3844
doi: 10.1021/nl072566s
Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T, Ensslin K (2008) Tunable graphene single electron transistor. Nano Lett 8(8):2378–2383
pubmed: 18642958 doi: 10.1021/nl801225h
Standley B, Bao W, Zhang H, Bruck J, Lau CN, Bockrath M (2008) Graphene-based atomic-scale switches. Nano Lett 8(10):3345–3349
pubmed: 18729415 doi: 10.1021/nl801774a
Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5(3):190–194
pubmed: 20154685 pmcid: 2901100 doi: 10.1038/nnano.2010.8
Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7):4174–4180
pubmed: 20550104 doi: 10.1021/nn1007429
Wu ZS, Pei S, Ren W, Tang D, Gao L, Liu B et al (2009) Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv Mater 21(17):1756–1760
doi: 10.1002/adma.200802560
Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514
doi: 10.1002/adfm.200800951
Arsat R, Breedon M, Shafiei M, Spizziri PG, Gilje S, Kaner RB et al (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(4):344–347
doi: 10.1016/j.cplett.2008.11.039
Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655
pubmed: 17660825 doi: 10.1038/nmat1967
Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140
pubmed: 18763832 doi: 10.1021/nl8013007
Wang X, Zhi L, Tsao N, Tomovic Z, Li J, Mullen K (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed Engl 47(16):2990–2992
pubmed: 18330884 doi: 10.1002/anie.200704909
Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398
pubmed: 17944523 doi: 10.1021/nl0717715
Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9):6158–6160
pubmed: 20349968 doi: 10.1021/la100886x
Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63. https://doi.org/10.3389/fchem.2014.00063
doi: 10.3389/fchem.2014.00063 pubmed: 25221775 pmcid: 4145256
Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188
pubmed: 24895834 doi: 10.1021/cr500023c
Viswanathan S, Narayanan TN, Aran K, Fink KD, Paredes J, Ajayan PM et al (2015) Graphene–protein field effect biosensors: glucose sensing. Mater Today 18(9):513–522
doi: 10.1016/j.mattod.2015.04.003
Szunerits S, Maalouli N, Wijaya E, Vilcot J-P, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405(5):1435–1443
pubmed: 23314618 doi: 10.1007/s00216-012-6624-0
Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15(1–2):16–25
doi: 10.1016/S1369-7021(12)70017-2
Szunerits S, Boukherroub R (2018) Graphene-based biosensors. Interface Focus 8(3):20160132–20160132
pubmed: 29696084 pmcid: 5915654 doi: 10.1098/rsfs.2016.0132
Wu H, Wang J, Kang X, Wang C, Wang D, Liu J et al (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80(1):403–406
pubmed: 19782243 doi: 10.1016/j.talanta.2009.06.054
Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613
pubmed: 19522529 doi: 10.1021/ac900136z
Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH et al (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multi-enzyme functionalized carbon nanospheres. Anal Chem 82(7):2989–2995
pubmed: 20201502 pmcid: 2909472 doi: 10.1021/ac100036p
Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang S-Y et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5):2910–2918
pubmed: 20377244 doi: 10.1021/nn100145x
Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382
pubmed: 19227979 doi: 10.1021/ac802193c
Alwarappan S, Liu C, Kumar A, Li C-Z (2010) Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114(30):12920–12924
doi: 10.1021/jp103273z
Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476
pubmed: 19367973 doi: 10.1021/nl802412n
Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736
pubmed: 20925398 doi: 10.1021/nn101390x
Hu W, Peng C, Luo W, Lv M, Li X, Li D et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323
pubmed: 20593851 doi: 10.1021/nn101097v
Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220
doi: 10.1021/jp906325q
Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M et al (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C Mater Biol Appl 74:568–581
pubmed: 28254332 doi: 10.1016/j.msec.2016.12.125
Gupta VK, Atar N, Yola ML, Eryılmaz M, Torul H, Tamer U et al (2013) A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J Colloid Interface Sci 406:231–237. https://doi.org/10.1016/j.jcis.2013.06.007
doi: 10.1016/j.jcis.2013.06.007 pubmed: 23816220
Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129
doi: 10.1016/j.molliq.2015.04.032
Gupta VK, Jain AK, Agarwal S, Maheshwari G (2007) An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand. Talanta 71(5):1964–1968
pubmed: 19071549 doi: 10.1016/j.talanta.2006.08.038
Gupta VK, Yola ML, Atar N, Ustundağ Z, Solak AO (2013) A novel sensitive Cu(II) and Cd(II) nanosensor platform: Graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim Acta 112:541–548
doi: 10.1016/j.electacta.2013.09.011
Gupta VK, Yola ML, Atar N, Üstündağ Z, Solak AO (2014) Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications. J Mol Liq 191:172–176
doi: 10.1016/j.molliq.2013.12.014
Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 183(1–3):402–409
pubmed: 20692088 doi: 10.1016/j.jhazmat.2010.07.039
Kotan G, Kardaş F, Yokuş ÖA, Akyıldırım O, Saral H, Eren T et al (2016) A novel determination of curcumin via Ru@Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal Methods 8(2):401–408
doi: 10.1039/C5AY02950C
Zhang D, Ouyang X, Ma J, Li L, Zhang Y (2016) Electrochemical behavior and voltammetric determination of curcumin at electrochemically reduced graphene oxide modified glassy carbon electrode. Electroanalysis 28(4):749–756
doi: 10.1002/elan.201500494
Dey N, Devasena T, Sivalingam T (2018) A comparative evaluation of graphene oxide based materials for electrochemical non-enzymatic sensing of curcumin. Mater Res Express 5(2). https://doi.org/10.1088/2053-1591/aaaa78
Rahimnejad M, Zokhtareh R, Moghadamnia AA, Asghary M (2020) An electrochemical sensor based on reduced graphene oxide modified carbon paste electrode for curcumin determination in human blood serum. Port Electrochim Acta 38(1):29–42
doi: 10.4152/pea.202001029
Hatamie S, Ahadian MM, Iraji zad A, Akhavan O, Jokar E (2018) Photoluminescence and electrochemical investigation of curcumin-reduced graphene oxide sheets. J Iran Chem Soc 15(2):351–357
doi: 10.1007/s13738-017-1236-4
Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222
pubmed: 28061404 doi: 10.1016/j.biopha.2016.12.108
Desai ML, Jha S, Basu H, Singhal RK, Sharma P, Kailasa SK (2018) Chicken egg white and L-cysteine as cooperative ligands for effective encapsulation of Zn-doped silver nanoclusters for sensing and imaging applications. Colloids Surf A Physicochem Eng Asp 559:35–42
doi: 10.1016/j.colsurfa.2018.09.036
Li J, Zuo G, Pan X, Wei W, Qi X, Su T et al (2018) Nitrogen-doped carbon dots as a fluorescent probe for the highly sensitive detection of Ag+ and cell imaging. Luminescence 33(1):243–248
pubmed: 29045035 doi: 10.1002/bio.3407
Zhu P, Lyu D, Shen PK, Wang X (2019) Sulfur-rich carbon dots as a novel fluorescent imaging probe for distinguishing the pathological changes of mouse-bone cells. J Lumin 207:620–625
doi: 10.1016/j.jlumin.2018.12.010
Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4):4410–4420
pubmed: 26997431 doi: 10.1021/acsnano.6b00043
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A et al (2019) Shedding light on gene therapy: carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs-A review. J Adv Res 18:81–93
pubmed: 30828478 pmcid: 6383136 doi: 10.1016/j.jare.2019.01.004
Hormozi-Nezhad MR, Taghipour M (2016) Quick speciation of iron (II) and iron (III) in natural samples using a selective fluorescent carbon dot-based probe. Anal Methods 8(20):4064–4068
doi: 10.1039/C6AY00083E
Yang J, Zhang X, Ma YH, Gao G, Chen X, Jia HR et al (2016) Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces 8(47):32170–32181
pubmed: 27786440 doi: 10.1021/acsami.6b10398
Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381
pubmed: 25316556 doi: 10.1039/C4CS00269E
Maiti S, Das K, Das PK (2013) Label-free fluorimetric detection of histone using quaternized carbon dot–DNA nanobiohybrid. Chem Commun (Camb) 49(78):8851–8853
doi: 10.1039/c3cc44492a
Qu Y, Ren G, Yu L, Zhu B, Chai F, Chen L (2019) The carbon dots as colorimetric and fluorescent dual-readout probe for 2-nitrophenol and 4-nitrophenol detection. J Lumin 207:589–596
doi: 10.1016/j.jlumin.2018.12.017
Zhao J, Pan X, Sun X, Pan W, Yu G, Wang J (2018) Detection of metronidazole in honey and metronidazole tablets using carbon dots-based sensor via the inner filter effect. Luminescence 33(4):704–712
pubmed: 29520942 doi: 10.1002/bio.3467
Bhamore JR, Jha S, Basu H, Singhal RK, Murthy Z, Kailasa SK (2018) Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg 2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms. Anal Bioanal Chem 410(11):2781–2791
pubmed: 29480389 doi: 10.1007/s00216-018-0958-1
Jiao Z, Zhang H, Jiao S, Guo Z, Zhu D, Zhao X (2019) A turn-on biosensor-based aptamer-mediated carbon quantum dots nanoaggregate for acetamiprid detection in complex samples. Food Anal Methods 12(3):668–676
doi: 10.1007/s12161-018-1393-9
Campos BB, Contreras-Cáceres R, Bandosz TJ, Jiménez-Jiménez J, Rodríguez-Castellón E, da Silva JCE et al (2016) Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon 106:171–178
doi: 10.1016/j.carbon.2016.05.030
Yang H, Ran G, Yan J, Zhang H, Hu X (2018) A sensitive fluorescence quenching method for the detection of tartrazine with acriflavine in soft drinks. Luminescence 33(2):349–355
pubmed: 29094465 doi: 10.1002/bio.3420
Jing N, Tian M, Wang Y, Zhang Y (2019) Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media. J Lumin 206:169–175
doi: 10.1016/j.jlumin.2018.10.059
Ostadhossein F, Misra SK, Mukherjee P, Ostadhossein A, Daza E, Tiwari S et al (2016) Defined host–guest chemistry on nanocarbon for sustained inhibition of cancer. Small 12(42):5845–5861
pubmed: 27545321 pmcid: 5542878 doi: 10.1002/smll.201601161
Yang S-T, Wang X, Wang H, Lu F, Luo PG, Cao L et al (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C Nanomater Interfaces 113(42):18110–18114
pubmed: 20357893 pmcid: 2846368 doi: 10.1021/jp9085969
Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Carbon dots and graphene quantum dots in electrochemical biosensing. Nano 9(4):634
Wang Y, Zhu Y, Yu S, Jiang C (2017) Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv 7(65):40973–40989
doi: 10.1039/C7RA07573A
Shi Y, Li C, Liu S, Liu Z, Zhu J, Yang J et al (2015) Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. RSC Adv 5(79):64790–64796
doi: 10.1039/C5RA13404H
Yan F, Zu F, Xu J, Zhou X, Bai Z, Ma C et al (2019) Fluorescent carbon dots for ratiometric detection of curcumin and ferric ion based on inner filter effect, cell imaging and PVDF membrane fouling research of iron flocculants in wastewater treatment. Sensors Actuators B Chem 287:231–240
doi: 10.1016/j.snb.2019.01.144
Zhang Q, Zhang C, Li Z, Ge J, Li C, Dong C et al (2015) Nitrogen-doped carbon dots as fluorescent probe for detection of curcumin based on the inner filter effect. RSC Adv 5(115):95054–95060
doi: 10.1039/C5RA18176C
Bian W, Wang X, Wang Y, Yang H, Huang J, Cai Z et al (2018) Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence 33(1):174–180
pubmed: 28914481 doi: 10.1002/bio.3390
Liu Y, Gong X, Dong W, Zhou R, Shuang S, Dong C (2018) Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for curcumin determination in real sample and cellular imaging. Talanta 183:61–69. https://doi.org/10.1016/j.talanta.2018.02.060
doi: 10.1016/j.talanta.2018.02.060 pubmed: 29567190
Baig MMF, Chen YC (2017) Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. J Colloid Interface Sci 501:341–349
pubmed: 28463765 doi: 10.1016/j.jcis.2017.04.045
Luo T, Bu L, Peng S, Zhang Y, Zhou Z, Li G et al (2019) One-step microwave-assisted preparation of oxygen-rich multifunctional carbon quantum dots and their application for Cu2+−curcumin detection. Talanta 205:120117. https://doi.org/10.1016/j.talanta.2019.120117
doi: 10.1016/j.talanta.2019.120117 pubmed: 31450427
Ragu S, Chen S-M, Ranganathan P, Rwei S-P (2016) Fabrication of a novel nickel-curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int J Electrochem Sci 11:9133–9144
doi: 10.20964/2016.11.09
Hatamie S, Ahadian MM, Akhavan O, Jokar E (2018) Photoluminescence and electrochemical investigation of curcumin-reduced graphene oxide sheets. J Iran Chem Soc 15(2):351–357
doi: 10.1007/s13738-017-1236-4
Kumara KK, Devendirana M, Jyothithamizhanban, Narayanan SS (2014) Curcumin/MWCNT Modified Graphite Electrode for Electrochemical Determination of BHA. International Conference on Advances in New materials (ICAN 2014). Volume 2 Special Issue 1. Organized By:- Department of Inorganic Chemistry, University of Madras
Cirillo G, Curcio M, Spizzirri UG, Vittorio O, Tucci P, Picci N et al (2017) Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. Eur Polym J 90:1–12
doi: 10.1016/j.eurpolymj.2017.03.011

Auteurs

Mohammad Mohajeri (M)

Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Behzad Behnam (B)

Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. behnamb@kmu.ac.ir.
Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran. behnamb@kmu.ac.ir.
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran. behnamb@kmu.ac.ir.

Aida Tasbandi (A)

Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Tannaz Jamialahmadi (T)

Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.

Amirhossein Sahebkar (A)

Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. amir_saheb2000@yahoo.com.
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. amir_saheb2000@yahoo.com.
Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. amir_saheb2000@yahoo.com.
Halal Research Center of IRI, FDA, Tehran, Iran. amir_saheb2000@yahoo.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH