Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits.
Journal
Horticulture research
ISSN: 2662-6810
Titre abrégé: Hortic Res
Pays: England
ID NLM: 101655540
Informations de publication
Date de publication:
01 Aug 2021
01 Aug 2021
Historique:
received:
18
12
2020
accepted:
19
04
2021
revised:
22
03
2021
entrez:
1
8
2021
pubmed:
2
8
2021
medline:
2
8
2021
Statut:
epublish
Résumé
Sugars, especially glucose and fructose, contribute to the taste and quality of tomato fruits. These compounds are translocated from the leaves to the fruits and then unloaded into the fruits by various sugar transporters at the plasma membrane. SWEETs, are sugar transporters that regulate sugar efflux independently of energy or pH. To date, the role of SWEETs in tomato has received very little attention. In this study, we performed functional analysis of SlSWEET7a and SlSWEET14 to gain insight into the regulation of sugar transport and storage in tomato fruits. SlSWEET7a and SlSWEET14 were mainly expressed in peduncles, vascular bundles, and seeds. Both SlSWEET7a and SlSWEET14 are plasma membrane-localized proteins that transport fructose, glucose, and sucrose. Apart from the resulting increase in mature fruit sugar content, silencing SlSWEET7a or SlSWEET14 resulted in taller plants and larger fruits (in SlSWEET7a-silenced lines). We also found that invertase activity and gene expression of some SlSWEET members increased, which was consistent with the increased availability of sucrose and hexose in the fruits. Overall, our results demonstrate that suppressing SlSWEET7a and SlSWEET14 could be a potential strategy for enhancing the sugar content of tomato fruits.
Identifiants
pubmed: 34333539
doi: 10.1038/s41438-021-00624-w
pii: 10.1038/s41438-021-00624-w
pmc: PMC8325691
doi:
Types de publication
Journal Article
Langues
eng
Pagination
186Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : No.31372054
Informations de copyright
© 2021. The Author(s).
Références
Nature. 2010 Nov 25;468(7323):527-32
pubmed: 21107422
Int J Mol Sci. 2018 Aug 24;19(9):
pubmed: 30149541
Hortic Res. 2018 Mar 20;5:14
pubmed: 29581882
Genet Mol Res. 2012 Mar 16;11(1):661-71
pubmed: 22535402
Plant Cell Physiol. 2017 Sep 1;58(9):1442-1460
pubmed: 28922744
Nat Commun. 2016 Oct 26;7:13245
pubmed: 27782132
Plant Cell Physiol. 2017 May 1;58(5):863-873
pubmed: 28371825
Plant Cell. 2009 Jul;21(7):2072-89
pubmed: 19574437
Plant Cell. 2015 Mar;27(3):607-19
pubmed: 25794936
Gene. 2018 Dec 30;679:90-99
pubmed: 30176314
Plant J. 2007 Sep;51(6):1126-36
pubmed: 17666025
J Exp Bot. 2019 Jun 28;70(12):3241-3254
pubmed: 30958535
J Exp Bot. 2014 Mar;65(3):799-807
pubmed: 24453229
Plant J. 2006 Jan;45(2):180-92
pubmed: 16367963
Plant Biotechnol J. 2021 Mar;19(3):409-411
pubmed: 33047500
Front Plant Sci. 2017 Oct 27;8:1855
pubmed: 29163584
Plant Biotechnol J. 2020 Feb;18(2):540-552
pubmed: 31350935
Funct Plant Biol. 2005 Sep;32(9):777-785
pubmed: 32689175
Plant Cell. 2014 Aug;26(8):3224-42
pubmed: 25139005
Biochem Biophys Res Commun. 2018 Feb 5;496(2):407-414
pubmed: 29307830
Front Plant Sci. 2020 Jan 27;10:1753
pubmed: 32047506
Nat Genet. 2015 Dec;47(12):1489-93
pubmed: 26523777
Plant J. 2018 Oct;96(2):343-357
pubmed: 30044900
Plant Biotechnol J. 2016 Apr;14(4):1116-26
pubmed: 26402509
Plant Physiol. 2003 Aug;132(4):2058-72
pubmed: 12913161
Planta. 2018 Nov;248(5):1187-1199
pubmed: 30094488
Phytochemistry. 2007 Mar;68(6):709-31
pubmed: 17234224
Nature. 2015 Nov 12;527(7577):259-263
pubmed: 26479032
Plant Cell. 2009 Apr;21(4):1305-23
pubmed: 19366901
Plant Cell Physiol. 2014 Jun;55(6):1123-41
pubmed: 24833026
Gene. 2015 Dec 1;573(2):261-72
pubmed: 26190159
Front Plant Sci. 2019 Apr 18;10:506
pubmed: 31057596
J Exp Bot. 2014 Apr;65(7):1713-35
pubmed: 24347463
Sci Rep. 2016 Mar 18;6:23173
pubmed: 26988970
Trends Plant Sci. 2018 Feb;23(2):163-177
pubmed: 29183781
Biochim Biophys Acta. 2016 Oct;1857(10):1715-25
pubmed: 27487250
Plant Physiol. 2016 Nov;172(3):1596-1611
pubmed: 27694342
Plant Cell. 2002 Jul;14(7):1567-77
pubmed: 12119375
Nature. 2014 Apr 24;508(7497):546-9
pubmed: 24670640
ACS Cent Sci. 2019 Jun 26;5(6):1085-1096
pubmed: 31263768
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3685-94
pubmed: 24027245
Science. 2012 Jan 13;335(6065):207-11
pubmed: 22157085
Trends Plant Sci. 2015 Dec;20(12):844-857
pubmed: 26603980
J Exp Bot. 2012 May;63(9):3367-77
pubmed: 22140246
Curr Biol. 2019 Apr 1;29(7):1178-1186.e6
pubmed: 30905604
Genes (Basel). 2019 Mar 28;10(4):
pubmed: 30925768
Mol Plant. 2010 Nov;3(6):1049-63
pubmed: 20833733
New Phytol. 2018 Apr;218(2):604-615
pubmed: 29393510
Plant Physiol. 1988 Jul;87(3):731-6
pubmed: 16666216
Mol Plant. 2015 Nov 2;8(11):1687-90
pubmed: 26358680
Mol Plant. 2011 Jul;4(4):641-62
pubmed: 21746702
Mol Plant. 2011 May;4(3):377-94
pubmed: 21502663
New Phytol. 2019 Apr;222(2):864-881
pubmed: 30506685
Plant Cell. 2018 Sep;30(9):2057-2081
pubmed: 30120167
Annu Rev Plant Biol. 2014;65:33-67
pubmed: 24579990
Plant Mol Biol. 2019 Jul;100(4-5):351-365
pubmed: 31030374
Plant Physiol. 2014 Feb;164(2):777-89
pubmed: 24381066
Curr Opin Plant Biol. 2015 Jun;25:53-62
pubmed: 25988582
Front Plant Sci. 2014 Oct 06;5:516
pubmed: 25339963