Single axonal morphology reveals high heterogeneity in spinocerebellar axons originating from the lumbar spinal cord in the mouse.
RRID:AB_2313920
aldolase C
axonal reconstruction
biotinylated dextran amine
cerebellar cortex
cerebellar mossy fibers
cerebellar nuclei
lateral reticular nucleus
nucleus X
zebrin
Journal
The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
24
07
2021
received:
07
05
2021
accepted:
27
07
2021
pubmed:
2
8
2021
medline:
25
3
2022
entrez:
1
8
2021
Statut:
ppublish
Résumé
Among the spinocerebellar projections vital for sensorimotor coordination of limbs and the trunk, the morphology of spinocerebellar axons originating from the lumbar cord has not been well characterized compared to those from thoracic and sacral cords. We reconstructed 26 single spinocerebellar axons labeled by biotinylated dextran injections into the gray matter of the lumbar spinal cord in mice. Axon terminals were mapped with the zebrin pattern of the cerebellar cortex. Reconstructed axons were primarily classified into ipsilaterally and contralaterally ascending axons, arising mainly from the dorsal and ventral horns, respectively. The majority of ipsilateral and contralateral axons took the dorsal-medullary and ventral-pontine pathways, respectively. The axons of both groups terminated mainly in the vermal and medial paravermal areas of lobules II-V and VIII-IXa, often bilaterally but predominantly ipsilateral to the axonal origin, with a weak preference to particular portions of zebrin stripes. The ipsilateral axons originating from the medial dorsal horn in the upper lumbar cord (n = 3) had abundant (43-147) mossy fiber terminals and no medullary collaterals. The ipsilateral axons originating from the lateral dorsal horn in the lower lumbar cord (n = 9) and the contralateral axons (n = 14) showed remarkable morphology variations. The number of their mossy fiber terminals varied from 2 to 172. Their collaterals, observed in 17 axons out of 23, terminated mainly in the medial cerebellar nucleus, nucleus X, and lateral reticular nucleus in various degrees. The results indicated that the lumbar spinocerebellar projection contains highly heterogeneous axonal populations regarding their pathway, branching, and termination patterns.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3893-3921Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Aliskya, J. M., & Tolbertab, D. L. (1997). Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe. Neuroscience, 80(2), 373-388. https://doi.org/10.1016/s0306-4522(97)00082-1
Ando, T., Ueda, M., Luo, Y., & Sugihara, I. (2020). Heterogeneous vestibulocerebellar mossy fiber projections revealed by single axon reconstruction in the mouse. The Journal of Comparative Neurology, 528(10), 1775-1802. https://doi.org/10.1002/cne.24853
Biswas, M. S., Luo, Y., Sarpong, G. A., & Sugihara, I. (2019). Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. The Journal of Comparative Neurology, 527(12), 1966-1985. https://doi.org/10.1002/cne.24662
Brochu, G., Maler, L., & Hawkes, R. (1990). Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. The Journal of Comparative Neurology, 291(4), 538-552. https://doi.org/10.1002/cne.902910405
Brodal, A. (1981). Neurological anatomy: In relation to clinical medicine (p. 1053). Oxford University Press. https://doi.org/10.1002/ana.410100629
Cameron, D., Polgár, E., Mecinas, M. G., Lima, M. G., Watanabe, M., & Todd, A. J. (2015). The organization of spinoparabrachial neurons in the mouse. Pain, 156(10), 2061-2071. https://doi.org/10.1097/j.pain.0000000000000270
Cerminara, N. L., Aoki, H., Loft, M., Sugihara, I., & Apps, R. (2013). Structural basis of cerebellar microcircuits in the rat. Journal of Neuroscience, 33(42), 16427-16442. https://doi.org/10.1523/jneurosci.0861-13.2013
Franklin, K. B., & Paxinos, G. (2008). The mouse brain in stereotaxic coordinates (3rd ed.). Academic Press.
Fu, Y., Sengul, G., Paxinos, G., & Watson, C. (2012). The spinal precerebellar nuclei: Calcium binding proteins and gene expression profile in the mouse. Neuroscience Letters, 518(2), 161-166. https://doi.org/10.1016/j.neulet.2012.05.002
Fujita, H., Aoki, H., Ajioka, I., Yamazaki, M., Abe, M., Oh-Nishi, A., Sakimura, K., & Sugihara, I. (2014). Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus Knock-in mice. PLoS One, 9(1), e86679. https://doi.org/10.1371/journal.pone.0086679
Fujita, H., Kodama, T., & du Lac, S. (2020). Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife, 9, e58613. https://doi.org/10.7554/eLife.58613
Geborek, P., Bengtsson, F., & Jorntell, H. (2014). Properties of bilateral spinocerebellar activation of cerebellar cortical neurons. Frontiers in Neural Circuits, 8, 128. https://doi.org/10.3389/fncir.2014.00128
Geborek, P., Nilsson, E., Bolzoni, F., & Jankowska, E. (2013). A survey of spinal collateral actions of feline ventral spinocerebellar tract neurons. European Journal of Neuroscience, 37, 380-392. https://doi.org/10.1111/ejn.12060
Gebre, S. A., Reeber, S. L., & Sillitoe, R. V. (2012). Parasagittal compartmentation of cerebellar mossy fibers as revealed by the patterned expression of vesicular glutamate transporters VGLUT1 and VGLUT2. Brain Structure and Function, 217(2), 165-180. https://doi.org/10.1007/s00429-011-0339-4
González-González, M. A., Gómez-González, G. B., Becerra-González, M., & Martínez-Torres, A. (2017). Identification of novel cellular clusters define a specialized area in the cerebellar periventricular zone. Scientific Reports, 7, 40768. https://doi.org/10.1038/srep40768
Gravel, C., & Hawkes, R. (1990). Parasagittal organization of the rat cerebellar cortex: Direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. The Journal of Comparative Neurology, 291(1), 79-102. https://doi.org/10.1002/cne.902910107
Ji, Z., & Hawkes, R. (1994). Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: Spinocerebellar and cuneocerebellar projections. Neuroscience, 61(4), 935-954. https://doi.org/10.1016/0306-4522(94)90414-6
Jiang, J., Azim, E., Ekerot, C. F., & Alstermark, B. (2015). Direct and indirect spino-cerebellar pathways: Shared ideas but different functions in motor control. Frontiers in Computational Neuroscience, 9, 75. https://doi.org/10.3389/fncom.2015.00075
Low, A. Y., Thanawalla, A. R., Yip, A. K., Kim, J., Wong, K. L., Tantra, M., Augustine, G. J., & Chen, A. I. (2018). Precision of discrete and rhythmic forelimb movements requires a distinct neuronal subpopulation in the interposed anterior nucleus. Cell Reports, 22(9), 2322-2333. https://doi.org/10.1016/j.celrep.2018.02.017
Luo, Y., Onozato, T., Wu, X., Sasamura, K., Sakimura, K., & Sugihara, I. (2020). Dense projection of Stilling's nucleus spinocerebellar axons that convey tail proprioception to the midline area in lobule VIII of the mouse cerebellum. Brain Structure and Function, 225(2), 621-638. https://doi.org/10.1007/s00429-020-02025-6
Luo, Y., Patel, R. P., Sarpong, G. A., Sasamura, K., & Sugihara, I. (2018). Single axonal morphology and termination to cerebellar aldolase C stripes characterize distinct spinocerebellar projection systems originating from the thoracic spinal cord in the mouse. The Journal of Comparative Neurology, 526(4), 681-706. https://doi.org/10.1002/cne.24360
Matsushita, M. (1999). Projections from the lowest lumbar and sacral-caudal segments to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. The Journal of Comparative Neurology, 404(1), 21-32. https://doi.org/10.1002/(SICI)1096-9861(19990201)404:1<21::AID-CNE2>3.0.CO;2-7
Matsushita, M. (2017). Projections from the lowest lumbar and sacral-caudal segments to the cerebellar cortex in the rat: An anterograde tracing study. Neuroscience Research, 114, 43-54. https://doi.org/10.1016/j.neures.2016.09.013
Matsushita, M. (2020). Projections from the lowest thoracic and upper lumbar segments to the cerebellar cortex in the rat: An anterograde tracing study. Neuroscience Research, 170, 166-180. https://doi.org/10.1016/j.neures.2020.07.005
Matsushita, M., & Hosoya, Y. (1979). Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Research, 173(2), 185-200. https://doi.org/10.1016/0006-8993(79)90620-6
Matsushita, M., & Hosoya, Y. (1982). Spinocerebellar projections to lobules III to V of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase. The Journal of Comparative Neurology, 208(2), 127-143. https://doi.org/10.1002/cne.902080203
Matsushita, M., Hosoya, Y., & Ikeda, M. (1979). Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. The Journal of Comparative Neurology, 184(1), 81-105. https://doi.org/10.1002/cne.901840106
Matsushita, M., & Ikeda, M. (1980). Spinocerebellar projections to the vermis of the posterior lobe and the paramedian lobule in the cat, as studied by retrograde transport of horseradish peroxidase. The Journal of Comparative Neurology, 192(1), 143-162. https://doi.org/10.1002/cne.901920110
Matsushita, M., & Okado, N. (1981). Spinocerebellar projections to lobules I and II of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase. The Journal of Comparative Neurology, 197(3), 411-424. https://doi.org/10.1002/cne.901970305
Matsushita, M., & Yaginuma, H. (1989). Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. The Journal of Comparative Neurology, 288(1), 19-38. https://doi.org/10.1002/cne.902880103
Oscarsson, O. (1965). Functional organization of the spino- and cuneocerebellar tracts. Physiological Reviews, 45(3), 495-522. https://doi.org/10.1152/physrev.1965.45.3.495
Quy, P. N., Fujita, H., Sakamoto, Y., Na, J., & Sugihara, I. (2011). Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. The Journal of Comparative Neurology, 519(5), 874-899. https://doi.org/10.1002/cne.22555
Reeber, S. L., Gebre, S., & Sillitoe, R. V. (2011). Fluorescence mapping of afferent topography in three dimensions. Brain Structure and Function, 216(3), 159-169. https://doi.org/10.1007/s00429-011-0304-2
Sarpong, G. A., Vibulyaseck, S., Luo, Y. J., Biswas, M. S., Fujita, H., Hirano, S., & Sugihara, I. (2018). Cerebellar modules in the olivo-cortico-nuclear loop demarcated by pcdh10 expression in the adult mouse. The Journal of Comparative Neurology, 526(15), 2406-2427. https://doi.org/10.1002/cne.24499
Sengul, G., Fu, Y., Yu, Y., & Paxinos, G. (2015). Spinal cord projections to the cerebellum in the mouse. Brain Structure and Function, 220(5), 2997-3009. https://doi.org/10.1007/s00429-014-0840-7
Stecina, K., Fedirchuk, B., & Hultborn, H. (2013). Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. Journal of Physiology (London), 591(22), 5433-5443. https://doi.org/10.1113/jphysiol.2012.249110
Sugihara, I., & Fujita, H. (2010). A computer-aided light microscopy system for three-dimensional reconstruction of axonal projections. In A. Mendez-Vilas & J. Diaz (Eds.), Microscopy: Science, technology, applications and education, microscopy book series (pp. 813-819). Badajoz.
Sugihara, I., Fujita, H., Na, J., Quy, P. N., Li, B., & Ikeda, D. (2009). Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. The Journal of Comparative Neurology, 512(2), 282-304. https://doi.org/10.1002/cne.21889
Sugihara, I., & Quy, P. N. (2007). Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. The Journal of Comparative Neurology, 500(6), 1076-1092. https://doi.org/10.1002/cne.21219
Sugihara, I., & Shinoda, Y. (2004). Molecular, topographic, and functional organization of the cerebellar cortex: A study with combined aldolase C and olivocerebellar labeling. Journal of Neuroscience, 24(40), 8771-8785. https://doi.org/10.1523/jneurosci.1961-04.2004
Sugihara, I., & Shinoda, Y. (2007). Molecular, topographic, and functional organization of the cerebellar nuclei: Analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. Journal of Neuroscience, 27(36), 9696-9710. https://doi.org/10.1523/jneurosci.1579-07.2007
Swanson, L. W. (2018). Brain maps 4.0-Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps. The Journal of Comparative Neurology, 526(6), 935-943. https://doi, https://doi.org/10.1002/cne.24381
Tano, D., Napieralski, J. A., Eisenman, L. M., Messer, A., Plummer, J., & Hawkes, R. (1992). Novel developmental boundary in the cerebellum revealed by zebrin expression in the Lurcher (Lc/ +) mutant mouse. The Journal of Comparative Neurology, 323(1), 128-136. https://doi.org/10.1002/cne.903230111
Tolbert, D. L., Alisky, J. M., & Clark, B. R. (1993). Lower thoracic upper lumbar spinocerebellar projections in rats: A complex topography revealed in computer reconstructions of the unfolded anterior lobe. Neuroscience, 55(3), 755-774. https://doi.org/10.1016/0306-4522(93)90440-q
Voogd, J., & Ruigrok, T. J. H. (1997). Chapter 2: Transverse and longitudinal patterns in the mammalian cerebellum. In C. I. De Zeeuw, P. Strata, & J. Voogd (Eds.), The Cerebellum: From Structure to Control. Progress in Brain Research (Vol. 114, pp. 21-37). Elsevier.
Wu, H., Sugihara, I., & Shinoda, Y. (1999). Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. The Journal of Comparative Neurology, 411(1), 97-118. https://doi.org/10.1002/(sici)1096-9861(19990816)411:1<97::aid-cne8>3.0.co;2-o
Xu, W., Jones, S., & Edgley, S. A. (2013). Event time representation in cerebellar mossy fibres arising from the lateral reticular nucleus. The Journal of Physiology, 591(4), 1045-1062. https://doi.org/10.1113/jphysiol.2012.244723
Yaginuma, H., & Matsushita, M. (1989). Spinocerebellar projections from the upper lumbar segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. The Journal of Comparative Neurology, 281(2), 298-319. https://doi.org/10.1002/cne.902810211