SIR Dynamics with Vaccination in a Large Configuration Model.

Configuration model Epidemic Optimal control SIR-V

Journal

Applied mathematics and optimization
ISSN: 0095-4616
Titre abrégé: Appl Math Optim
Pays: United States
ID NLM: 9875919

Informations de publication

Date de publication:
2021
Historique:
accepted: 06 07 2021
medline: 3 8 2021
pubmed: 3 8 2021
entrez: 2 8 2021
Statut: ppublish

Résumé

We consider an SIR model with vaccination strategy on a sparse configuration model random graph. We show the convergence of the system when the number of nodes grows and characterize the scaling limits. Then, we prove the existence of optimal controls for the limiting equations formulated in the framework of game theory, both in the centralized and decentralized setting. We show how the characteristics of the graph (degree distribution) influence the vaccination efficiency for optimal strategies, and we compute the limiting final size of the epidemic depending on the degree distribution of the graph and the parameters of infection, recovery and vaccination. We also present several simulations for two types of vaccination, showing how the optimal controls allow to decrease the number of infections and underlining the crucial role of the network characteristics in the propagation of the disease and the vaccination program.

Identifiants

pubmed: 34334841
doi: 10.1007/s00245-021-09810-7
pii: 9810
pmc: PMC8308122
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1769-1818

Informations de copyright

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.

Auteurs

Emanuel Javier Ferreyra (EJ)

Instituto de Cálculo UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria (1428), Buenos Aires, Argentina.

Matthieu Jonckheere (M)

Instituto de Cálculo UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria (1428), Buenos Aires, Argentina.

Juan Pablo Pinasco (JP)

IMAS UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria (1428), Buenos Aires, Argentina.
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria (1428), Buenos Aires, Argentina.

Classifications MeSH