A Survey of Unsupervised Deep Domain Adaptation.


Journal

ACM transactions on intelligent systems and technology
ISSN: 2157-6904
Titre abrégé: ACM Trans Intell Syst Technol
Pays: United States
ID NLM: 101592728

Informations de publication

Date de publication:
Sep 2020
Historique:
entrez: 2 8 2021
pubmed: 3 8 2021
medline: 3 8 2021
Statut: ppublish

Résumé

Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.

Identifiants

pubmed: 34336374
doi: 10.1145/3400066
pmc: PMC8323662
mid: NIHMS1678267
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1-46

Subventions

Organisme : NIA NIH HHS
ID : R35 AG071451
Pays : United States
Organisme : NIBIB NIH HHS
ID : R25 EB024327
Pays : United States
Organisme : NINR NIH HHS
ID : R01 NR016732
Pays : United States
Organisme : NIBIB NIH HHS
ID : R41 EB029774
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG065218
Pays : United States

Références

Proc IEEE Int Conf Big Data. 2017;2017:766-775
pubmed: 29457155
IEEE Trans Med Imaging. 2018 Dec;37(12):2572-2581
pubmed: 29993538
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1979-1993
pubmed: 30040630
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:2422-2431
pubmed: 32076365
Neural Comput. 1997 Nov 15;9(8):1735-80
pubmed: 9377276
Knowl Inf Syst. 2013 Sep 1;36(3):537-556
pubmed: 24039326
IEEE Trans Neural Netw Learn Syst. 2019 May;30(5):1381-1391
pubmed: 30281489
IEEE Trans Neural Netw Learn Syst. 2015 May;26(5):1019-34
pubmed: 25014970
Neuroimage. 2019 Jul 1;194:1-11
pubmed: 30898655
IEEE Trans Image Process. 2020 Jan 27;:
pubmed: 31995484
IEEE Trans Pattern Anal Mach Intell. 2019 Apr;41(4):801-814
pubmed: 29994060

Auteurs

Garrett Wilson (G)

Washington State University, USA.

Diane J Cook (DJ)

Washington State University, USA.

Classifications MeSH