Zeolite/Cellulose Acetate (ZCA) in Blend Fiber for Adsorption of Erythromycin Residue From Pharmaceutical Wastewater: Experimental and Theoretical Study.
adsorption capacity
cellulose
pharmaceutical industry
wastewater
zeolite
Journal
Frontiers in chemistry
ISSN: 2296-2646
Titre abrégé: Front Chem
Pays: Switzerland
ID NLM: 101627988
Informations de publication
Date de publication:
2021
2021
Historique:
received:
14
05
2021
accepted:
18
06
2021
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
3
8
2021
Statut:
epublish
Résumé
The expanding amount of remaining drug substances in wastewater adversely affects both the climate and human well-being. In the current investigation, we developed new cellulose acetic acid derivation/zeolite fiber as an effective technique to eliminate erythromycin (ERY) from wastewater. The number of interchangeable sites in the adsorbent structures and the ratio of ERY to the three adsorbents were identified as the main reasons for the reduction in adsorption as the initial ERY concentrations increased. Additionally, for all adsorbents, the pseudo-second-order modeling showed better fitting for the adsorption than the pseudo-first-order modeling. However, the findings obtained in the pseudo-first-order model were still enough for explaining the sorption kinetics of ERY, showing that the surface displayed all chemisorption and physi-sorption adsorption processes by both adsorbents. The
Identifiants
pubmed: 34336793
doi: 10.3389/fchem.2021.709600
pii: 709600
pmc: PMC8316859
doi:
Types de publication
Journal Article
Langues
eng
Pagination
709600Informations de copyright
Copyright © 2021 Jodeh, Erman, Hamed, Massad, Hanbali, Samhan, Dagdag, Kaya and Serdaroğlu.
Déclaration de conflit d'intérêts
Author SS was employed by the company Palestinian Water Authority. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Phys Chem A. 2007 Mar 15;111(10):1966-70
pubmed: 17305319
Carbohydr Polym. 2017 Jul 1;167:59-69
pubmed: 28433178
Proc Natl Acad Sci U S A. 1986 Nov;83(22):8440-1
pubmed: 16578791
Proc Natl Acad Sci U S A. 1985 Oct;82(20):6723-6
pubmed: 3863123
Talanta. 2015 Oct 1;143:1-6
pubmed: 26078121
J Phys Chem A. 2020 Dec 24;124(51):10897-10908
pubmed: 33301330
Photochem Photobiol. 2018 Sep;94(5):935-941
pubmed: 29768725
Colloids Surf B Biointerfaces. 2018 Nov 1;171:606-613
pubmed: 30103149
Food Sci Nutr. 2020 May 31;:
pubmed: 32837716
Environ Sci Pollut Res Int. 2018 Aug;25(22):22060-22074
pubmed: 29802610
Chirality. 2018 Sep;30(9):1088-1095
pubmed: 29978905
Bioprocess Biosyst Eng. 2003 Nov;26(1):49-55
pubmed: 14505163
Chirality. 2018 Apr;30(4):402-406
pubmed: 29266491
J Biomol Struct Dyn. 2021 Apr 20;:1-14
pubmed: 33876711
Ecotoxicol Environ Saf. 2019 Oct 15;181:248-254
pubmed: 31200197
Carbohydr Polym. 2013 Apr 15;94(1):71-6
pubmed: 23544511
Membranes (Basel). 2014 Feb 27;4(1):81-95
pubmed: 24957122
J Phys Chem B. 2006 May 11;110(18):8928-34
pubmed: 16671697
J Hazard Mater. 2015 May 30;289:28-37
pubmed: 25704432
Inorg Chem. 2015 Sep 8;54(17):8207-13
pubmed: 26305871
Biotechnol Adv. 2020 Nov 1;43:107571
pubmed: 32505655
Chemosphere. 2019 Mar;218:1089-1099
pubmed: 30609488
Chemosphere. 2003 Mar;50(9):1183-91
pubmed: 12547332
Environ Res. 2019 Mar;170:389-397
pubmed: 30623886
Bioresour Technol. 2019 Oct;290:121705
pubmed: 31295574
Materials (Basel). 2020 Jul 27;13(15):
pubmed: 32726973