Single-shot time-reversed optical focusing into and through scattering media.
Optical time reversal
Scattering media
Single-shot detection
Spatial light modulator
Ultrasonically encoded optical focusing
Wavefront shaping
Journal
ACS photonics
ISSN: 2330-4022
Titre abrégé: ACS Photonics
Pays: United States
ID NLM: 101634366
Informations de publication
Date de publication:
21 Oct 2020
21 Oct 2020
Historique:
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
3
8
2021
Statut:
ppublish
Résumé
Optical time reversal can focus light through or into scattering media, which raises a new possibility for conquering optical diffusion. Because optical time reversal must be completed within the correlation time of speckles, enhancing the speed of time-reversed optical focusing is important for practical applications. Although employing faster digital devices for time-reversal helps, more efficient methodologies are also desired. Here, we report a single-shot time-reversed optical focusing method to minimize the wavefront measurement time. In our approach, all information requisite for optical time reversal is extracted from a single-shot hologram, and hence no other preconditions or measurements are required. In particular, we demonstrate the first realization of single-shot time-reversed ultrasonically encoded (TRUE) optical focusing into scattering media. By using the minimum amount of measurement, this work breaks the fundamental speed limit of digitally based time reversal for focusing into and through scattering media, and constitutes an important step toward high-speed wavefront shaping applications.
Identifiants
pubmed: 34337103
doi: 10.1021/acsphotonics.0c01154
pmc: PMC8317964
mid: NIHMS1665938
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2871-2877Subventions
Organisme : NCI NIH HHS
ID : R01 CA186567
Pays : United States
Références
Phys Rev Lett. 2010 Mar 12;104(10):100601
pubmed: 20366410
Opt Express. 2012 May 7;20(10):10583-90
pubmed: 22565684
Nat Commun. 2015 Nov 24;6:8968
pubmed: 26597439
Nat Photonics. 2014 Dec;8(12):931-936
pubmed: 25530797
Optica. 2017 Feb;4(2):280-288
pubmed: 28815194
Opt Lett. 2016 Apr 1;41(7):1321-4
pubmed: 27192226
Opt Lett. 2020 Jan 15;45(2):431-434
pubmed: 32747844
Nat Photonics. 2015 Feb;9(2):126-132
pubmed: 25914725
Nat Photonics. 2008;2(2):110-115
pubmed: 19492016
Nat Photonics. 2011 Mar;5(3):154
pubmed: 21532925
Nat Commun. 2012 Jun 26;3:928
pubmed: 22735456
Opt Lett. 2007 Aug 15;32(16):2309-11
pubmed: 17700768
Optica. 2017 Jan 20;4(1):97-102
pubmed: 28670607
Appl Phys Lett. 2017 Nov 13;111(20):201108
pubmed: 29203931
Sci Rep. 2019 Feb 7;9(1):1537
pubmed: 30733574
Opt Lett. 2016 Mar 15;41(6):1130-3
pubmed: 26977651
Nat Photonics. 2012 Oct 1;6(10):657-661
pubmed: 23241552
Phys Rev Lett. 2016 Jun 24;116(25):253901
pubmed: 27391722
Optica. 2019 Mar 20;6(3):250-256
pubmed: 32025534
Sci Adv. 2017 Dec 08;3(12):eaao5520
pubmed: 29226248
Optica. 2015 Aug 20;2(8):728-735
pubmed: 26677458
Nat Commun. 2015 Jan 05;6:5904
pubmed: 25556918
Biomed Opt Express. 2014 Dec 10;6(1):72-85
pubmed: 25657876
ACS Photonics. 2020 Mar 18;7(3):837-844
pubmed: 34113691
Sci Rep. 2018 Feb 13;8(1):2927
pubmed: 29440682
Opt Lett. 2017 Dec 1;42(23):4994-4997
pubmed: 29216164
Nat Photonics. 2018;12:84-90
pubmed: 29527234
Phys Rev Lett. 2001 Jul 23;87(4):043903
pubmed: 11461618
Appl Phys Lett. 2019 Jun 10;114(23):231104
pubmed: 31312071