Effect of DNA Flexibility on Complex Formation of a Cationic Nanoparticle with Double-Stranded DNA.


Journal

ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658

Informations de publication

Date de publication:
27 Jul 2021
Historique:
received: 30 03 2021
accepted: 05 07 2021
entrez: 2 8 2021
pubmed: 3 8 2021
medline: 3 8 2021
Statut: epublish

Résumé

We present extensive molecular dynamics simulations of a cationic nanoparticle and a double-stranded DNA molecule to discuss the effect of DNA flexibility on the complex formation of a cationic nanoparticle with double-stranded DNA. Martini coarse-grained models were employed to describe double-stranded DNA molecules with two different flexibilities and cationic nanoparticles with three different electric charges. As the electric charge of a cationic nanoparticle increases, the degree of DNA bending increases, eventually leading to the wrapping of DNA around the nanoparticle at high electric charges. However, a small increase in the persistence length of DNA by 10 nm requires a cationic nanoparticle with a markedly increased electric charge to bend and wrap DNA around. Thus, a more flexible DNA molecule bends and wraps around a cationic nanoparticle with an intermediate electric charge, whereas a less flexible DNA molecule binds to a nanoparticle with the same electric charge without notable bending. This work provides solid evidence that a small difference in DNA flexibility (as small as 10 nm in persistence length) has a substantial influence on the complex formation of DNA with proteins from a biological perspective and suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnology as a new tool to manipulate the structure of DNA molecules mediated by nanoparticle binding.

Identifiants

pubmed: 34337212
doi: 10.1021/acsomega.1c01709
pmc: PMC8319935
doi:

Types de publication

Journal Article

Langues

eng

Pagination

18728-18736

Informations de copyright

© 2021 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

J Phys Chem Lett. 2019 Nov 21;10(22):7200-7207
pubmed: 31693374
Biophys J. 2001 Jan;80(1):130-9
pubmed: 11159388
J Mol Biol. 2009 Jan 30;385(4):1087-97
pubmed: 19059266
Bioconjug Chem. 2002 Jan-Feb;13(1):3-6
pubmed: 11792172
Biopolymers. 1991 Nov;31(13):1471-81
pubmed: 1814499
J Phys Chem B. 2007 Mar 22;111(11):3019-31
pubmed: 17388415
Nat Struct Mol Biol. 2008 Aug;15(8):768-74
pubmed: 18679428
Phys Rev Lett. 2017 Dec 1;119(22):227802
pubmed: 29286779
Sci Adv. 2019 Apr 05;5(4):eaav4943
pubmed: 30972363
Adv Mater. 2012 Aug 16;24(31):4261-5
pubmed: 22711427
J Phys Chem B. 2007 Jul 12;111(27):7812-24
pubmed: 17569554
J Chem Theory Comput. 2020 Sep 8;16(9):5972-5981
pubmed: 32810397
Biophys J. 2011 Sep 7;101(5):1139-47
pubmed: 21889451
J Chem Theory Comput. 2015 Aug 11;11(8):3932-45
pubmed: 26574472
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15421-6
pubmed: 20702767
PLoS Comput Biol. 2014 Dec 11;10(12):e1003990
pubmed: 25504215
J Chem Phys. 2011 Feb 28;134(8):085101
pubmed: 21361556
PLoS Comput Biol. 2015 Aug 11;11(8):e1004443
pubmed: 26262925
J Chem Phys. 2007 Feb 28;126(8):084901
pubmed: 17343470
J Phys Chem B. 2013 Jan 31;117(4):973-81
pubmed: 23234339
J Chem Inf Model. 2019 Oct 28;59(10):4427-4437
pubmed: 31580657
Angew Chem Int Ed Engl. 2006 May 5;45(19):3165-9
pubmed: 16572498
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Phys Chem B. 2011 Jan 20;115(2):217-30
pubmed: 21171620
Phys Rev Lett. 2005 Nov 25;95(22):228101
pubmed: 16384267
Biochem Biophys Res Commun. 2018 Mar 29;498(2):319-326
pubmed: 28958932
Biophys J. 2010 Sep 22;99(6):1896-905
pubmed: 20858435
ACS Nano. 2010 Sep 28;4(9):5421-9
pubmed: 20799717
J Am Chem Soc. 2002 May 1;124(17):4838-47
pubmed: 11971734
Annu Rev Biophys Biophys Chem. 1988;17:265-86
pubmed: 3293588
Soft Matter. 2018 Jan 31;14(5):817-825
pubmed: 29308503
Bioconjug Chem. 2000 Nov-Dec;11(6):926-32
pubmed: 11087343
Soft Matter. 2014 Jul 21;10(27):4875-84
pubmed: 24866417
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9138-43
pubmed: 12886020
Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4156-60
pubmed: 11929991
Biophys J. 2009 May 20;96(10):4044-52
pubmed: 19450476
Soft Matter. 2014 Feb 21;10(7):1045-55
pubmed: 24983118
Q Rev Biophys. 2001 Aug;34(3):269-324
pubmed: 11838235
J Mol Biol. 2019 Jan 18;431(2):323-335
pubmed: 30468737
J Phys Chem B. 2015 Jun 11;119(23):6894-904
pubmed: 25989627
J Chem Theory Comput. 2013 Jan 8;9(1):722-9
pubmed: 26589067
J Mol Biol. 2008 Oct 3;382(2):353-70
pubmed: 18586040
ACS Nano. 2015 Dec 22;9(12):12374-82
pubmed: 26522008
J Chem Theory Comput. 2017 Apr 11;13(4):1539-1555
pubmed: 28029797
J Phys Chem B. 2018 Dec 20;122(50):11827-11840
pubmed: 30477297
J Chem Phys. 2014 May 28;140(20):204912
pubmed: 24880330
J Am Chem Soc. 2009 Oct 21;131(41):15005-13
pubmed: 19778017
Nanoscale. 2016 Apr 28;8(17):9037-95
pubmed: 27080924
Int J Biol Macromol. 2018 Apr 1;109:36-48
pubmed: 29247730
J Am Chem Soc. 2009 Jul 22;131(28):9686-94
pubmed: 19555062
J Chem Theory Comput. 2018 Jul 10;14(7):3763-3779
pubmed: 29870236

Auteurs

Sehui Bae (S)

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.

Inrok Oh (I)

LG Chem Ltd., LG Science Park, Seoul 07796, Republic of Korea.

Jejoong Yoo (J)

Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Jun Soo Kim (JS)

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.

Classifications MeSH