Effect of DNA Flexibility on Complex Formation of a Cationic Nanoparticle with Double-Stranded DNA.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
27 Jul 2021
27 Jul 2021
Historique:
received:
30
03
2021
accepted:
05
07
2021
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
3
8
2021
Statut:
epublish
Résumé
We present extensive molecular dynamics simulations of a cationic nanoparticle and a double-stranded DNA molecule to discuss the effect of DNA flexibility on the complex formation of a cationic nanoparticle with double-stranded DNA. Martini coarse-grained models were employed to describe double-stranded DNA molecules with two different flexibilities and cationic nanoparticles with three different electric charges. As the electric charge of a cationic nanoparticle increases, the degree of DNA bending increases, eventually leading to the wrapping of DNA around the nanoparticle at high electric charges. However, a small increase in the persistence length of DNA by 10 nm requires a cationic nanoparticle with a markedly increased electric charge to bend and wrap DNA around. Thus, a more flexible DNA molecule bends and wraps around a cationic nanoparticle with an intermediate electric charge, whereas a less flexible DNA molecule binds to a nanoparticle with the same electric charge without notable bending. This work provides solid evidence that a small difference in DNA flexibility (as small as 10 nm in persistence length) has a substantial influence on the complex formation of DNA with proteins from a biological perspective and suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnology as a new tool to manipulate the structure of DNA molecules mediated by nanoparticle binding.
Identifiants
pubmed: 34337212
doi: 10.1021/acsomega.1c01709
pmc: PMC8319935
doi:
Types de publication
Journal Article
Langues
eng
Pagination
18728-18736Informations de copyright
© 2021 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
J Phys Chem Lett. 2019 Nov 21;10(22):7200-7207
pubmed: 31693374
Biophys J. 2001 Jan;80(1):130-9
pubmed: 11159388
J Mol Biol. 2009 Jan 30;385(4):1087-97
pubmed: 19059266
Bioconjug Chem. 2002 Jan-Feb;13(1):3-6
pubmed: 11792172
Biopolymers. 1991 Nov;31(13):1471-81
pubmed: 1814499
J Phys Chem B. 2007 Mar 22;111(11):3019-31
pubmed: 17388415
Nat Struct Mol Biol. 2008 Aug;15(8):768-74
pubmed: 18679428
Phys Rev Lett. 2017 Dec 1;119(22):227802
pubmed: 29286779
Sci Adv. 2019 Apr 05;5(4):eaav4943
pubmed: 30972363
Adv Mater. 2012 Aug 16;24(31):4261-5
pubmed: 22711427
J Phys Chem B. 2007 Jul 12;111(27):7812-24
pubmed: 17569554
J Chem Theory Comput. 2020 Sep 8;16(9):5972-5981
pubmed: 32810397
Biophys J. 2011 Sep 7;101(5):1139-47
pubmed: 21889451
J Chem Theory Comput. 2015 Aug 11;11(8):3932-45
pubmed: 26574472
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15421-6
pubmed: 20702767
PLoS Comput Biol. 2014 Dec 11;10(12):e1003990
pubmed: 25504215
J Chem Phys. 2011 Feb 28;134(8):085101
pubmed: 21361556
PLoS Comput Biol. 2015 Aug 11;11(8):e1004443
pubmed: 26262925
J Chem Phys. 2007 Feb 28;126(8):084901
pubmed: 17343470
J Phys Chem B. 2013 Jan 31;117(4):973-81
pubmed: 23234339
J Chem Inf Model. 2019 Oct 28;59(10):4427-4437
pubmed: 31580657
Angew Chem Int Ed Engl. 2006 May 5;45(19):3165-9
pubmed: 16572498
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Phys Chem B. 2011 Jan 20;115(2):217-30
pubmed: 21171620
Phys Rev Lett. 2005 Nov 25;95(22):228101
pubmed: 16384267
Biochem Biophys Res Commun. 2018 Mar 29;498(2):319-326
pubmed: 28958932
Biophys J. 2010 Sep 22;99(6):1896-905
pubmed: 20858435
ACS Nano. 2010 Sep 28;4(9):5421-9
pubmed: 20799717
J Am Chem Soc. 2002 May 1;124(17):4838-47
pubmed: 11971734
Annu Rev Biophys Biophys Chem. 1988;17:265-86
pubmed: 3293588
Soft Matter. 2018 Jan 31;14(5):817-825
pubmed: 29308503
Bioconjug Chem. 2000 Nov-Dec;11(6):926-32
pubmed: 11087343
Soft Matter. 2014 Jul 21;10(27):4875-84
pubmed: 24866417
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9138-43
pubmed: 12886020
Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4156-60
pubmed: 11929991
Biophys J. 2009 May 20;96(10):4044-52
pubmed: 19450476
Soft Matter. 2014 Feb 21;10(7):1045-55
pubmed: 24983118
Q Rev Biophys. 2001 Aug;34(3):269-324
pubmed: 11838235
J Mol Biol. 2019 Jan 18;431(2):323-335
pubmed: 30468737
J Phys Chem B. 2015 Jun 11;119(23):6894-904
pubmed: 25989627
J Chem Theory Comput. 2013 Jan 8;9(1):722-9
pubmed: 26589067
J Mol Biol. 2008 Oct 3;382(2):353-70
pubmed: 18586040
ACS Nano. 2015 Dec 22;9(12):12374-82
pubmed: 26522008
J Chem Theory Comput. 2017 Apr 11;13(4):1539-1555
pubmed: 28029797
J Phys Chem B. 2018 Dec 20;122(50):11827-11840
pubmed: 30477297
J Chem Phys. 2014 May 28;140(20):204912
pubmed: 24880330
J Am Chem Soc. 2009 Oct 21;131(41):15005-13
pubmed: 19778017
Nanoscale. 2016 Apr 28;8(17):9037-95
pubmed: 27080924
Int J Biol Macromol. 2018 Apr 1;109:36-48
pubmed: 29247730
J Am Chem Soc. 2009 Jul 22;131(28):9686-94
pubmed: 19555062
J Chem Theory Comput. 2018 Jul 10;14(7):3763-3779
pubmed: 29870236