An Integrated Deep Network for Cancer Survival Prediction Using Omics Data.
RNA-seq
deep belief networks
deep learning
integrated cancer survival analysis
multi-omics
precision medicine
Journal
Frontiers in big data
ISSN: 2624-909X
Titre abrégé: Front Big Data
Pays: Switzerland
ID NLM: 101770603
Informations de publication
Date de publication:
2021
2021
Historique:
received:
01
06
2020
accepted:
01
06
2021
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
3
8
2021
Statut:
epublish
Résumé
As a highly sophisticated disease that humanity faces, cancer is known to be associated with dysregulation of cellular mechanisms in different levels, which demands novel paradigms to capture informative features from different omics modalities in an integrated way. Successful stratification of patients with respect to their molecular profiles is a key step in precision medicine and in tailoring personalized treatment for critically ill patients. In this article, we use an integrated deep belief network to differentiate high-risk cancer patients from the low-risk ones in terms of the overall survival. Our study analyzes RNA, miRNA, and methylation molecular data modalities from both labeled and unlabeled samples to predict cancer survival and subsequently to provide risk stratification. To assess the robustness of our novel integrative analytics, we utilize datasets of three cancer types with 836 patients and show that our approach outperforms the most successful supervised and semi-supervised classification techniques applied to the same cancer prediction problems. In addition, despite the preconception that deep learning techniques require large size datasets for proper training, we have illustrated that our model can achieve better results for moderately sized cancer datasets.
Identifiants
pubmed: 34337396
doi: 10.3389/fdata.2021.568352
pii: 568352
pmc: PMC8322661
doi:
Types de publication
Journal Article
Langues
eng
Pagination
568352Informations de copyright
Copyright © 2021 Hassanzadeh and Wang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Methods Mol Biol. 2016;1418:111-41
pubmed: 27008012
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Nat Med. 2019 May;25(5):744-750
pubmed: 31011206
Nat Biotechnol. 2015 Aug;33(8):831-8
pubmed: 26213851
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:178-183
pubmed: 32551184
Brief Bioinform. 2018 Nov 27;19(6):1236-1246
pubmed: 28481991
Nat Genet. 2013 Oct;45(10):1113-20
pubmed: 24071849
Genome Biol. 2006;7 Suppl 1:S12.1-14
pubmed: 16925834
IEEE Trans Nanobioscience. 2015 Sep;14(6):608-16
pubmed: 26316190
IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
pubmed: 16119262
Genome Biol. 2015 Jun 25;16:133
pubmed: 26109056
Nat Rev Gastroenterol Hepatol. 2019 Apr;16(4):207-220
pubmed: 30718832
J Breast Cancer. 2012 Jun;15(2):230-8
pubmed: 22807942
J Biomed Inform. 2012 Dec;45(6):1191-8
pubmed: 22910106
IEEE/ACM Trans Comput Biol Bioinform. 2015 Jul-Aug;12(4):928-37
pubmed: 26357333
Nature. 2017 Jun 28;546(7660):686
pubmed: 28658222
Nat Biotechnol. 2014 Jul;32(7):644-52
pubmed: 24952901
J Pathol. 2018 Apr;244(5):525-537
pubmed: 29266437
Nat Biotechnol. 2015 Aug;33(8):825-6
pubmed: 26252139
Cancer Discov. 2012 May;2(5):401-4
pubmed: 22588877
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
Sci Rep. 2016 Jan 11;6:18962
pubmed: 26752681
Science. 2006 Jul 28;313(5786):504-7
pubmed: 16873662
Mol Pharm. 2016 May 2;13(5):1445-54
pubmed: 27007977
Clin Cancer Res. 2019 Mar 1;25(5):1505-1516
pubmed: 30171046
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3373-3376
pubmed: 29060620
Sci Rep. 2014 Feb 06;4:4002
pubmed: 24499868
J Am Med Inform Assoc. 2013 Jul-Aug;20(4):613-8
pubmed: 23467471
Nature. 2008 Apr 3;452(7187):553-63
pubmed: 18385729
Mol Biosyst. 2015 Mar;11(3):892-7
pubmed: 25588719
IEEE/ACM Trans Comput Biol Bioinform. 2015 Jan-Feb;12(1):103-12
pubmed: 25750595