Persicaria strigosa (R.Br.) Nakai: a natural anthelmintic?


Journal

Parasitology research
ISSN: 1432-1955
Titre abrégé: Parasitol Res
Pays: Germany
ID NLM: 8703571

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 27 05 2021
accepted: 14 07 2021
pubmed: 3 8 2021
medline: 14 10 2021
entrez: 2 8 2021
Statut: ppublish

Résumé

Persicaria strigosa (R.Br.) Nakai. (Family Polygonaceae) is an important plant of Assam, having several ethnobotanical uses. Tribal communities consume leaf extracts to cure helminth infection. The present study investigated the antioxidant, phytochemicals, and anthelmintic activity of P. strigosa. Total phenolic and flavonoid contents were estimated following standard methods. Antioxidant properties were analyzed by TAC, FRAP, DPPH, ABTS, and TBARS assays. Anthelmintic activity of plant was investigated in Paramphistomum sp. treated with 5 mg/mL, and paralysis and death times were recorded. The most potent solvent extract was performed GC-MS analysis to identify the phytocompounds. Plant extract-treated parasites were further analyzed for biochemical changes. Additionally, molecular docking was performed to study the binding affinities between phytocompounds and enzymes. P. strigosa showed rich phenolics, flavonoids, and antioxidant properties. Ethyl acetate and methanolic extracts showed more powerful antioxidant properties than other extracts. In vitro anthelmintic study found ethyl acetate and diethyl ether the most active extracts. Treated parasites showed a significant decrease in enzyme activity. The highest inhibition was observed in AchE, followed by MDH, LDH, ALP, and ACP. GC-MS study identified 12 probable compounds from the ethyl acetate extract of P. strigosa. Molecular docking showed the strongest binding affinity between the phytocompounds and AchE enzyme (- 7.6 kcal/mol). Overall, compounds C6, C7, and C12 showed better binding affinity compared to other compounds. The in vitro helminth bioassays and biochemical analysis suggest Persicaria strigosa a possible anthelmintic agent. However, isolation and characterization of bioactive compound(s) may promise new drug candidates for helminth infections.

Identifiants

pubmed: 34337681
doi: 10.1007/s00436-021-07249-x
pii: 10.1007/s00436-021-07249-x
doi:

Substances chimiques

Anthelmintics 0
Antioxidants 0
Phytochemicals 0
Plant Extracts 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3215-3227

Subventions

Organisme : Science and Engineering Research Board
ID : EEQ/2017/000071

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Adhikari PP, Talukdar S, Borah A (2018) Ethnomedicobotanical study of indigenous knowledge on medicinal plants used for the treatment of reproductive problems in Nalbari district, Assam, India. J Ethnopharmacol 210:386–407. https://doi.org/10.1016/j.jep.2017.07.024
doi: 10.1016/j.jep.2017.07.024 pubmed: 28733191
Ajanal M, Gundkalle M, Nayak S (2012) Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc Sci Life 31(4):198–201. https://doi.org/10.4103/0257-7941.107361
doi: 10.4103/0257-7941.107361 pubmed: 23661869 pmcid: 3644759
Belemlilga MB, Traore A, Ouedraogo S, Kabore A, Tamboura HH, Guissou IP (2016) Anthelmintic activity of Saba senegalensis (A.DC) Pichon (Apocynaceae) extract against adult worms and eggs of Haemonchus contortus. Asian Pac J Trop Biomed 6(11):945–949. https://doi.org/10.1016/j.apjtb.2016.07.015
doi: 10.1016/j.apjtb.2016.07.015
Bergmeyer HU (1974) Malate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie International, Florida, pp 485
Bergmeyer HU, Bernt E (1981) Lactate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie International, Florida, pp 574–579
Chance MRA, Mansour TE (1953) A contribution to the pharmacology of movement in the liver fluke. Br J Pharmacol Chemother 8:134–138. https://doi.org/10.1111/j.1476-5381.1953.tb00766.x
doi: 10.1111/j.1476-5381.1953.tb00766.x pubmed: 13066710 pmcid: 1509347
Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182. https://doi.org/10.38212/2224-6614.2748
Choudhary N, Khatik GL, Choudhary S, Singh G, Suttee A (2021) In vitro anthelmintic activity of Chenopodium album and in-silico prediction of mechanistic role on Eisenia foetida. Heliyon 7(1):e05917. https://doi.org/10.1016/j.heliyon.2021.e05917
doi: 10.1016/j.heliyon.2021.e05917 pubmed: 33553723 pmcid: 7848649
Daimari M, Roy MK, Swargiary A, Baruah S, Basumatary S (2019) An ethnobotanical survey of antidiabetic medicinal plants used by the Bodo tribe of Kokrajhar district. Assam Indian J Tradit Know 18(3):421–429
Deka N, Devi N (2015) Aquatic angiosperm of BTC area, Assam, with reference to their traditional uses. Asian J Plant Sci Res 5(5):9–13
Dey P, Roy B (2020) Effect of Lysimachia ramosa Wall. Ex Duby and its n-butanol extract on glycogen content and some energy-related enzymes in the cestode Raillietina echinobothrida. Proc Zool Soc 73:255–264. https://doi.org/10.1007/s12595-019-00307-4
doi: 10.1007/s12595-019-00307-4
Eguale T, Giday M (2009) In vitro anthelmintic activity of three medicinal plants against Haemonchus contortus. Int J Green Pharm 3(1):29–34. https://doi.org/10.4103/0973-8258.49371
doi: 10.4103/0973-8258.49371
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9
doi: 10.1016/0006-2952(61)90145-9 pubmed: 13726518
El-Swaify ZA, Moaty DA, Youssef M, El-Hela A (2015) Phytochemical studies on Persicaria salicifolia plant and seeds from Egypt. Al Azhar Buletin Sci 26(2-C):37−45. https://doi.org/10.21608/absb.2015.23781
Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(1):69–75. https://doi.org/10.1289/ehp.01109s169
doi: 10.1289/ehp.01109s169 pubmed: 11250806 pmcid: 1240543
Freiberg M, Winter M, Gentile A, Zizka A, Muellner-Riehl AN, Weigelt A et al (2020) LCVP, the leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants. Sci Data 7(416):1–11. https://doi.org/10.1038/s41597-020-00702-z
doi: 10.1038/s41597-020-00702-z
Giri BR, Roy B (2015) Resveratrol- and α-viniferin-induced alterations of acetylcholinesterase and nitric oxide synthase in Raillietina echinobothrida. Parasitol Res 114:3775–3781. https://doi.org/10.1007/s00436-015-4607-8
doi: 10.1007/s00436-015-4607-8 pubmed: 26141435
Gogoi S, Yadav AK (2016) In vitro and in vivo anthelmintic effects of Caesalpinia bonducella (L.) Roxb leaf extract on Hymenolepis diminuta (Cestoda) and Syphacia obvelata (Nematoda). J Intercult Ethnopharmacol 5(4):427–433. https://doi.org/10.5455/jice.20160821024821
doi: 10.5455/jice.20160821024821 pubmed: 27757275 pmcid: 5061488
Gurol A, Kasim V, Suzergoz F (2017) Antiproliferative effects of fluorine substitute 3,5-di-tert-butylphenol bearing Schiff bases using CFSE-based cell proliferation assay. Curr Sci 112(3):619–624. https://doi.org/10.18520/cs/v112/i03/619-624
doi: 10.18520/cs/v112/i03/619-624
Horwitt MK (1991) Data supporting supplementation of humans with vitamin-E. J Nutr 121(3):424–429. https://doi.org/10.1093/jn/121.3.424
doi: 10.1093/jn/121.3.424 pubmed: 1796936
Hossain MM, Yuan Y, Huang H, Wang Z, Baki MA, Dai Z et al (2021) Exposure to dodecamethylcyclohexasiloxane (D6) affects the antioxidant response and gene expression of Procambarus clarkii. Sustainability 13(6):3495. https://doi.org/10.3390/su13063495
doi: 10.3390/su13063495
Huang AG, Yi YL, Ling F, Lu L, Zhang Q, Wang Q et al (2013) Screening of plant extracts for anthelmintic activity against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 112:4065–4072. https://doi.org/10.1007/s00436-013-3597-7
doi: 10.1007/s00436-013-3597-7 pubmed: 24005478
Huda-Faujan N, Noriham A, Norrakiah AS, Babji AS (2009) Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr J Biotechnol 8(3):484–489
Iloki-Assanga SB, Lewis L, Rivera EG, Gil A, Acosta A, Meza C et al (2013) Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (Noni) grown in Mexico. Afr J Biotechnol 12(29):4630–4639
Iloki-Assanga SB, Lewis Lujan LM, Lara Espinoza CL, Gil Salido AA, Fernandez Angulo D, Rubio Pino JL et al (2015) Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res Notes 8:396. https://doi.org/10.1186/s13104-015-1388-1
Irshad M, Zafaryab M, Singh M, Rizvi MMA (2012) Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int J Med Chem 157125. https://doi.org/10.1155/2012/157125
Joshi AKR, Nagaraju R, Rajini PS (2018) Involvement of acetylcholinesterase inhibition in paralyzing effects of monocrotophos in Caenorhabditis elegans. JoBAZ 79:33. https://doi.org/10.1186/s41936-018-0047-1
doi: 10.1186/s41936-018-0047-1
Kumari C, Virk AK, Kumari S, Gupta T, Rolta R, Li X, Kulshrestha S (2021) Identification of potential targets for Thymidylate Synthase and Amp-C βlactamase from of non-alkaloidal fractions of Moringa oleifera leaves. Curr Pharm Biotechnol. https://doi.org/10.2174/1389201022666210111120208
Lai SM, Sudhahar D, Anandarajagopal K (2012) In vitro anthelmintic potential of Persicaria chinensis leaves. Int J Biol Pharmaceut Res 3(3):400–404
Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S (2012) Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac J Trop Biomed 2(12):960–965. https://doi.org/10.1016/S2221-1691(13)60007-6
doi: 10.1016/S2221-1691(13)60007-6 pubmed: 23593576 pmcid: 3621472
Makwana H, Pandya D (2020) Bioactivity-guided isolation, characterization, and estimation of esculetin – a potential marker from Launaea pinnatifida Cass. Phcog Mag 16:713–721
doi: 10.4103/pm.pm_264_20
Mamta, Mehrotra S, Amitabh, Kirar V, Vats P, Nandi SP et al (2015) Phytochemical and antimicrobial activities of Himalayan Cordyceps sinensis (Berk.) Sacc. Indian J Exp Biol 53(1):36−43. http://nopr.niscair.res.in/handle/123456789/30279
Mansour TE (2002) Chemotherapeutic targets in parasites: contemporary strategy, 1st edn. Cambridge University Press, UK
doi: 10.1017/CBO9780511546440
Musthafa KS, Sahu SK, Ravi AV, Kathiresan K (2013) Anti-quorum sensing potential of the mangrove Rhizophora annamalayana. World J Microbiol Biotechnol 29(10):21851–1858. https://doi.org/10.1007/s11274-013-1347-8
doi: 10.1128/CMR.12.1.97
Nawaz H, Aslam Shad M, Rehman N, Andaleeb H, Ullah N (2020) Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz J Pharm Sci 56. https://doi.org/10.1590/s2175-97902019000417129
Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
doi: 10.1021/acs.jnatprod.9b01285 pubmed: 32162523
Noor Hashim NH, Abas F, Shaari K, Lajis NH (2013) Antioxidant and xanthine oxidase inhibitory activities of Persicaria hydropiper. Int J Food Prop 16(5):1028–1036. https://doi.org/10.1080/10942912.2011.575497
doi: 10.1080/10942912.2011.575497
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminformatics 3(33). https://doi.org/10.1186/1758-2946-3-33
Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3
doi: 10.1016/0003-2697(79)90738-3 pubmed: 36810
Ordonez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq). Food Chem 97(3):452–458. https://doi.org/10.1016/j.foodchem.2005.05.024
doi: 10.1016/j.foodchem.2005.05.024
Panda SK, Das R, Leyssen P, Neyts J, Luyten W (2018) Assessing medicinal plants traditionally used in the Chirang reserve forest, Northeast India for antimicrobial activity. J Ethnopharmacol 225:220–233. https://doi.org/10.1016/j.jep.2018.07.011
doi: 10.1016/j.jep.2018.07.011 pubmed: 30005956
Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: from chemistry to biology. Molecules 14(6):2202–2211. https://doi.org/10.3390/molecules14062202
doi: 10.3390/molecules14062202 pmcid: 6254163
Plummer DT (1988) An introduction to practical biochemistry, 3rd edn. Tata McGraw-Hill Publishing Comp Ltd., New Delhi, pp 236–238
Pullan RL, Smith JL, Jasrasaria R, Brooker SJ (2014) Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 7(37). https://doi.org/10.1186/1756-3305-7-37
Quesada-Romero L, Fernández-Galleguillos C, Bergmann J, Amorós ME, Jiménez-Aspee F, Gonzalez A et al (2020) Phenolic fingerprinting, antioxidant, and deterrent potentials of Persicaria maculosa extracts. Molecules 25(13):3054. https://doi.org/10.3390/molecules25133054
doi: 10.3390/molecules25133054 pmcid: 7411858
Raihan MO, Khalequeuzzaman M, Brishti A, Tareq SM, Hossain A, Rana S (2012) Anthelmintic and antiproliferative activity of aerial parts of Persicaria hydropiper. Der Pharmacia Sinica 3(1):104–110
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
doi: 10.1016/S0891-5849(98)00315-3 pubmed: 10381194
Roy B, Giri BR (2016) α-Viniferin and resveratrol induced alteration in the activities of some energy metabolism related enzymes in the cestode parasite Raillietina echinobothrida. Acta Trop 154:102–106. https://doi.org/10.1016/j.actatropica.2015.11.011
doi: 10.1016/j.actatropica.2015.11.011 pubmed: 26603215
Roy B, Swargiary A (2009) Anthelmintic efficacy of ethanolic shoot extract of Alpinia nigra on tegumental enzymes of Fasciolopsis buski, a giant intestinal parasite. J Parasit Dis 33(1–2):48–53. https://doi.org/10.1007/s12639-009-0008-1
doi: 10.1007/s12639-009-0008-1 pubmed: 23129888
Roy B, Tandon V (1999) Fluckicidal activity of Alpinia nigra (Zingiberaceae) against the trematode Fasciolopsis buski. Biomed Lett 60:23–29
Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1):1–10
pubmed: 22238476
Seidel V (2005) Initial and bulk extract. In: Satyajit D, Sarker SD, Latif Z, Gray AI (eds) Natural product research, 2nd edn. Humana Press, Totowa, pp 29−33
Sim OP, Abdul Rasid R, Abu Daud NH, David D, Abdul Haya B, Saibeh K et al (2019) Preliminary investigation on the chemical composition of local medicinal herbs (Curcuma longa L., Persicaria odorata L and Eleutherine palmifolia L.) as potential layer feed additives for the production of healthy eggs. Trans Sci Technol 6(2–2):221–227
Stepek G, Lowe AE, Buttle DL, Duce IR, Behnke JM (2007) The anthelmintic efficacy of plant derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo. Parasitology 134(10):1409–1419. https://doi.org/10.1017/S0031182007002867
doi: 10.1017/S0031182007002867 pubmed: 17475089
Swargiary A, Brahma D (2017) Trace element analysis and antioxidant activity of fruit extract of Hodgsonia heteroclita (Roxb). Indian J Pharm Sci 79(2):212–219. https://doi.org/10.4172/pharmaceutical-sciences.1000219
doi: 10.4172/pharmaceutical-sciences.1000219
Swargiary A, Roy B (2015) Phytochemical screening and antioxidant property of shoot extracts of Alpinia nigra (Gaertn.) Burtt (Family Zingiberaceae). Med Plants 7(1):48–54. https://doi.org/10.5958/0975-6892.2015.00007.6
doi: 10.5958/0975-6892.2015.00007.6
Swargiary A, Roy B, Giri BR, Ronghang B (2013) A comparative study on the anthelmintic efficacy of some medicinal plants of North-East India: alteration in the glycolytic enzymes of Fasciolopsis buski, a giant intestinal fluke. Asian Pac J Trop Med 2013:412–420
Swargiary A, Daimari A, Daimari M, Basumatary N, Narzary E (2016) Phytochemicals, antioxidant and anthelmintic activity of selected traditional wild edible plants of lower Assam. Indian J Pharmacol 48(4):418–423. https://doi.org/10.4103/0253-7613.186212
doi: 10.4103/0253-7613.186212 pubmed: 27756954 pmcid: 4980931
Swargiary A, Nath P, Basumatary B, Brahma D (2017) Phytochemical, antioxidant, and trace element analysis of anthelmintic plants of North-East India. Int J Pharm Pharm Sci 9(9):228−232. https://doi.org/10.22159/ijpps.2017v9i9.20668
Swargiary A, Daimari M, Roy MK, Haloi D, Ramchiary B (2019a) Evaluation of phytochemical properties and larvicidal activities of Cynodon dactylon, Clerodendrum viscosum, Spilanthes acmella and Terminalia chebula against Aedes aegypti. Asian Pac J Trop Med 12(5):224–231. https://doi.org/10.4103/1995-7645.259243
doi: 10.4103/1995-7645.259243
Swargiary A, Roy MK, Daimari M (2019b) Survey and documentation of ethnobotanicals used in the traditional medicines system of tribal communities of Chirang district of Assam against helminthiasis. Biomed Pharmacol J 12(4):1923−1935. https://doi.org/10.13005/bpj/1824
Swargiary A, Roy MK, Daimari M (2019c) Survey and documentation of putative anthelmintic plants used in ethnomedicinal systems of tribal communities of Baksa district of Assam. Med Plants 11(4):368–379. https://doi.org/10.5958/0975-6892.2019.00048.0
doi: 10.5958/0975-6892.2019.00048.0
Swargiary A, Daimari M, Roy MK (2020) Survey and documentation of anthelmintic plants used in traditional medicine system of tribal communities of Udalguri district of Assam. India J Appl Pharm Sci 10(1):46–54. https://doi.org/10.7324/JAPS.2020.101006
doi: 10.7324/JAPS.2020.101006
Swargiary A, Brahma K, Boro T, Daimari M, Roy MK (2021a) Study of phytochemical content, antioxidant and larvicidal property of different solvent extracts of Clerodendrum infortunatum and Citrus grandis. Indian J Tradit Know 20(2):329–334
Swargiary A, Roy MK, Verma AK (2021b) In vitro study of the antioxidant, antiproliferative, and anthelmintic properties of some medicinal plants of Kokrajhar district, India. J Parasit Dis. https://doi.org/10.1007/s12639-021-01410-0
doi: 10.1007/s12639-021-01410-0
Tandon V, Yadav AK, Roy B, Das B (2011) Phytochemicals as cure of worm infections in traditional medicine systems In: Srivastava UC, Kumar S (eds) Emerging trends in zoology. Narendra Publishing House, New Delhi, pp 351−378
Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367. https://doi.org/10.1093/nar/gky473
Timson DJ (2016) Metabolic enzymes of helminth parasites: potential as drug targets. Curr Protein Pept Sci 17(3):280–295. https://doi.org/10.2174/1389203717999160226180733
doi: 10.2174/1389203717999160226180733 pubmed: 26983888
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334
doi: 10.1002/jcc.21334 pubmed: 19499576 pmcid: 3041641
Verpoorte R (2001) Pharmacognosy in the new millennium: lead finding and biotechnology. J Pharm Pharmacol 52(3):253–262. https://doi.org/10.1211/0022357001773931
doi: 10.1211/0022357001773931
Zhao T, Sun M, Kong L, Xue Q, Wang Y, Wang Y et al (2021) Bioactivity-guided isolation of phytochemicals from Vaccinium dunalianum Wight and their antioxidant and enzyme inhibitory activities. Molecules 26(7):2075. https://doi.org/10.3390/molecules26072075
doi: 10.3390/molecules26072075 pubmed: 33916551 pmcid: 8038501

Auteurs

Ananta Swargiary (A)

Department of Zoology, Pharmacology and Bioinformatics Laboratory, Bodoland University, Kokrajhar, 783370, Assam, India. ananbuzoo101@gmail.com.

Mritunjoy Kumar Roy (MK)

Department of Zoology, Pharmacology and Bioinformatics Laboratory, Bodoland University, Kokrajhar, 783370, Assam, India.

Harmonjit Boro (H)

Department of Zoology, Pharmacology and Bioinformatics Laboratory, Bodoland University, Kokrajhar, 783370, Assam, India.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH