PAX8, an Emerging Player in Ovarian Cancer.
Biomarkers
Cancer tissues
Metastasis
Ovarian cancers
PAX genes
Transcription factors
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
5
8
2021
Statut:
ppublish
Résumé
Ovarian Cancer is one of the most lethal and widespread gynecological malignancies. It is the seventh leading cause of all cancer deaths worldwide. High-Grade Serous Cancer (HGSC), the most commonly occurring subtype, alone contributes to 70% of all ovarian cancer deaths. This is mainly attributed to the complete lack of symptoms during the early stages of the disease and absence of an early diagnostic marker.PAX8 is emerging as an important histological marker for most of the epithelial ovarian cancers, as it is expressed in about 90% of malignant ovarian cancers, specifically in HGSC. PAX8 is a member of the Paired-Box gene family (PAX1-9) of transcription factors whose expression is tightly controlled temporally and spatially. The PAX genes are well known for their role in embryonic development and their expression continues to persist in some adult tissues. PAX8 is required for the normal development of Müllerian duct that includes Fallopian tube, uterus, cervix, and upper part of vagina. In adults, it is expressed in the Fallopian tube and uterine epithelium and not in the ovarian epithelium. Considering the recent studies that predict the events preceding the tumorigenesis of HGSC from the Fallopian tube, PAX8 appears to have an important role in the development of ovarian cancer.In this chapter, we review some of the published findings to highlight the significance of PAX8 as an important marker and an emerging player in the pathogenesis of ovarian cancer. We also discuss regarding the future perspectives of PAX8 wherein it could contribute to the betterment of ovarian cancer diagnosis and treatment.
Identifiants
pubmed: 34339032
doi: 10.1007/978-3-030-73359-9_6
doi:
Substances chimiques
PAX8 Transcription Factor
0
PAX8 protein, human
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
95-112Informations de copyright
© 2021. Springer Nature Switzerland AG.
Références
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D., Forman, D., & Bray, F. (2014). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386.
doi: 10.1002/ijc.29210
Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29. https://doi.org/10.3322/caac.21254 .
doi: 10.3322/caac.21254
Kuhn, E., Meeker, A. K., Visvanathan, K., Gross, A. L., Wang, T. L., Kurman, R. J., & Shih Ie, M. (2011). Telomere length in different histologic types of ovarian carcinoma with emphasis on clear cell carcinoma. Modern Pathology, 24, 1139–1145. https://doi.org/10.1038/modpathol.2011.67 .
doi: 10.1038/modpathol.2011.67
pubmed: 21499239
pmcid: 4763925
Bowtell, D. D., Böhm, S., Ahmed, A. A., Aspuria, P.-J., Bast, R. C., Beral, V., et al. (2015). Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nature Reviews Cancer, 15(11), 668–679. https://doi.org/10.1038/nrc4019 .
doi: 10.1038/nrc4019
pubmed: 26493647
pmcid: 4892184
Vang, R., Shih, I.-M., & Kurman, R. J. (2009). Ovarian low-grade and high-grade serous carcinoma. Advances in Anatomic Pathology, 16(5), 267–282. https://doi.org/10.1097/pap.0b013e3181b4fffa .
doi: 10.1097/pap.0b013e3181b4fffa
pubmed: 19700937
pmcid: 2745605
Fathalla, M. F. (2013). Incessant ovulation and ovarian cancer—A hypothesis re-visited. Facts, Views and Vision in ObGyn, 5(4), 292–297.
pubmed: 24753957
pmcid: 3987381
Auersperg, N. (2013). Ovarian surface epithelium as a source of ovarian cancers: Unwarranted speculation or evidence-based hypothesis? Gynecologic Oncology, 130(1), 246–251. https://doi.org/10.1016/j.ygyno.2013.03.021 .
doi: 10.1016/j.ygyno.2013.03.021
pubmed: 23558054
Kessler, M., Fotopoulou, C., & Meyer, T. (2013). The molecular fingerprint of high grade serous ovarian cancer reflects its fallopian tube origin. International Journal of Molecular Sciences, 14(4), 6571–6596. https://doi.org/10.3390/ijms14046571 .
doi: 10.3390/ijms14046571
pubmed: 23528888
pmcid: 3645655
Olivier, R. I., van Beurden, M., Lubsen, M. A. C., Rookus, M. A., Mooij, T. M., van de Vijver, M. J., & van’t Veer, L. J. (2004). Clinical outcome of prophylactic oophorectomy in BRCA1/BRCA2 mutation carriers and events during follow-up. British Journal of Cancer, 90(8), 1492–1497.
doi: 10.1038/sj.bjc.6601692
Przybycin, C. G., Kurman, R. J., Ronnett, B. M., Shih, I.-M., & Vang, R. (2010). Are all pelvic (nonuterine) serous carcinomas of tubal origin? The American Journal of Surgical Pathology, 34(10), 1407–1416. https://doi.org/10.1097/pas.0b013e3181ef7b16 .
doi: 10.1097/pas.0b013e3181ef7b16
pubmed: 20861711
Kuhn, E., Kurman, R. J., Vang, R., et al. (2012). TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma—Evidence supporting the clonal relationship of the two lesions. The Journal of Pathology, 226(3), 421–426. https://doi.org/10.1002/path.3023 .
doi: 10.1002/path.3023
pubmed: 21990067
Kim, J., Coffey, D. M., Creighton, C. J., Yu, Z., Hawkins, S. M., & Matzuk, M. M. (2012). High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proceedings of the National Academy of Sciences, 109(10), 3921–3926. https://doi.org/10.1073/pnas.1117135109 .
doi: 10.1073/pnas.1117135109
Carlson, J. W., Miron, A., Jarboe, E. A., Parast, M. M., Hirsch, M. S., Lee, Y., et al. (2008). Serous tubal intraepithelial carcinoma: Its potential role in primary peritoneal serous carcinoma and serous cancer prevention. Journal of Clinical Oncology, 26(25), 4160–4165. https://doi.org/10.1200/jco.2008.16.4814 .
doi: 10.1200/jco.2008.16.4814
pubmed: 18757330
pmcid: 2654373
Lim, D., & Oliva, E. (2013). Precursors and pathogenesis of ovarian carcinoma. Pathology, 45(3), 229–242. https://doi.org/10.1097/pat.0b013e32835f2264 .
doi: 10.1097/pat.0b013e32835f2264
pubmed: 23478230
Jarboe, E., Folkins, A., Nucci, M. R., Kindelberger, D., Drapkin, R., Miron, A., et al. (2008). Serous carcinogenesis in the fallopian tube. International Journal of Gynecological Pathology, 27(1), 1–9. https://doi.org/10.1097/pgp.0b013e31814b191f .
doi: 10.1097/pgp.0b013e31814b191f
pubmed: 18156967
Diniz, P. M., Carvalho, J. P., Baracat, E. C., & Carvalho, F. M. (2011). Fallopian tube origin of supposed ovarian high-grade serous carcinomas. Clinics (São Paulo, Brazil), 66(1), 73–76. https://doi.org/10.1590/S180759322011000100013 .
doi: 10.1590/S180759322011000100013
Tone, A. A. (2017). Taking the tube. Clinical Obstetrics and Gynecology, 60(4), 697–710. https://doi.org/10.1097/grf.0000000000000313 .
doi: 10.1097/grf.0000000000000313
pubmed: 29045296
Vercellini, P., Crosignani, P., Somigliana, E., Vigano, P., Buggio, L., Bolis, G., & Fedele, L. (2011). The “incessant menstruation” hypothesis: A mechanistic ovarian cancer model with implications for prevention. Human Reproduction, 26(9), 2262–2273. https://doi.org/10.1093/humrep/der211 .
doi: 10.1093/humrep/der211
pubmed: 21724568
Tong, G. X., Devaraj, K., Hamele-Bena, D., Yu, W. M., Turk, A., Chen, X., Wright, J. D., & Greenebaum, E. (2011). Pax8: A marker for carcinoma of Müllerian origin in serous effusions. Diagnostic Cytopathology, 39(8), 567–574. https://doi.org/10.1002/dc.21426 . Epub 2010 Jul 6.
doi: 10.1002/dc.21426
pubmed: 20607683
Wang, Y., Wang, Y., Li, J., Yuan, Z., Yuan, B., Zhang, T., Cragun, J. M., Kong, B., & Zheng, W. (2013). PAX8: A sensitive and specific marker to identify cancer cells of ovarian origin for patients prior to neoadjuvant chemotherapy. Journal of Hematology and Oncology, 6, 60. https://doi.org/10.1186/1756-8722-6-60 .
doi: 10.1186/1756-8722-6-60
pubmed: 23958394
pmcid: 3751714
Xiang, L., & Kong, B. (2013). PAX8 is a novel marker for differentiating between various types of tumor, particularly ovarian epithelial carcinomas. Oncology Letters, 5(3), 735–738.
doi: 10.3892/ol.2013.1121
Chai, H. J., Ren, Q., Fan, Q., Ye, L., Du, G. Y., Du, H. W., Xu, W., Li, Y., Zhang, L., & Cheng, Z. P. (2017). PAX8 is a potential marker for the diagnosis of primary epithelial ovarian cancer. Oncology Letters, 14(5), 5871–5875. https://doi.org/10.3892/ol.2017.6949 .
doi: 10.3892/ol.2017.6949
pubmed: 29113220
pmcid: 5661437
Perets, R., Wyant, G. A., Muto, K. W., Bijron, J. G., Poole, B. B., Chin, K. T., Chen, J. Y. H., Ohman, A. W., Stepule, C. D., Kwak, S., Karst, A. M., Hirsch, M. S., Setlur, S. R., Crum, C. P., Dinulescu, D. M., & Drapkin, R. (2013). Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca; Tp53; Pten models. Cancer Cell, 24(6), 751–765. https://doi.org/10.1016/j.ccr.2013.10.013 .
doi: 10.1016/j.ccr.2013.10.013
pubmed: 24332043
pmcid: 3917315
Mansouri, A., Hallonet, M., & Gruss, P. (1996). Pax genes and their roles in cell differentiation and development. Current Opinion in Cell Biology, 8(6), 851–857. https://doi.org/10.1016/s0955-0674(96)80087-1 .
doi: 10.1016/s0955-0674(96)80087-1
pubmed: 8939674
Bopp, D., Burri, M., Baumgartner, S., Frigerio, G., & Noll, M. (1986). Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell, 47(6), 1033–1040.
doi: 10.1016/0092-8674(86)90818-4
Dahl, E., Koseki, H., & Balling, R. (1997). Pax genes and organogenesis. BioEssays, 19, 755–765.
doi: 10.1002/bies.950190905
Treisman, J., Harris, E., & Desplan, C. (1991). The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes & Development, 5(4), 594–604.
doi: 10.1101/gad.5.4.594
Mayran, A., Pelletier, A., & Drouin, J. (2015). Pax factors in transcription and epigenetic remodelling. Seminars in Cell & Developmental Biology, 44, 135–144. https://doi.org/10.1016/j.semcdb.2015.07.007 .
doi: 10.1016/j.semcdb.2015.07.007
Wilson, D., Sheng, G., Lecuit, T., Dostatni, N., & Desplan, C. (1993). Cooperative dimerization of paired class homeo domains on DNA. Genes & Development, 7, 2120–2134. https://doi.org/10.1101/gad.7.11.21201993 .
doi: 10.1101/gad.7.11.21201993
Kozmik, Z., Czerny, T., & Busslinger, M. (1997). Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. The EMBO Journal. https://doi.org/10.1093/emboj/16.22.6793 .
Blake, J. A., & Ziman, M. R. (2014). Pax genes: Regulators of lineage specification and progenitor cell maintenance. Development, 141, 737–751. https://doi.org/10.1242/dev.091785 .
doi: 10.1242/dev.091785
pubmed: 24496612
Lang, D., Powell, S. K., Plummer, R. S., Young, K. P., & Ruggeri, B. A. (2007). PAX genes: Roles in development, pathophysiology, and cancer. Biochemical Pharmacology, 73(1), 1–14. https://doi.org/10.1016/j.bcp.2006.06.024 .
doi: 10.1016/j.bcp.2006.06.024
pubmed: 16904651
Muratovska, A., Zhou, C., He, S., Goodyer, P., & Eccles, M. R. (2003). Paired-box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene, 22, 7989–7997.
doi: 10.1038/sj.onc.1206766
Relaix, F., Rocancourt, D., Mansouri, A., & Buckingham, M. (2004). Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes & Development, 18, 1088–1105.
doi: 10.1101/gad.301004
Busslinger, M. (2004). Transcriptional control of early B cell development. Annual Review of Immunology, 22, 55–79.
doi: 10.1146/annurev.immunol.22.012703.104807
Daniel, L., et al. (2001). Pax-2 expression in adult renal tumors. Human Pathology, 32, 282–237.
doi: 10.1053/hupa.2001.22753
Miyamoto, T., et al. (2001). Expression of dominant negative form of PAX4 in human insulinoma. Biochemical and Biophysical Research Communications, 282, 34–40.
doi: 10.1006/bbrc.2001.4552
Yamaoka, T., et al. (2000). Diabetes and pancreatic tumours in transgenic mice expressing Pax 6. Diabetologia, 43, 332–339.
doi: 10.1007/s001250050051
Tacha, D., Zhou, D., & Cheng, L. (2011). Expression of PAX8 in normal and neoplastic tissues: A comprehensive immunohistochemical study. Applied Immunohistochemistry & Molecular Morphology, 19(4), 293–299. https://doi.org/10.1097/PAI.0b013e3182025f66 .
doi: 10.1097/PAI.0b013e3182025f66
Gerber, J. K., et al. (2002). Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. The Journal of Pathology, 197, 293–297.
doi: 10.1002/path.1115
Liu, L., & Chen, T. (2012). PAX3-FKHR regulates the expression of pleiotrophin to mediate motility in alveolar rhabdomyosarcoma cells. Journal of Cancer Research Updates. https://doi.org/10.6000/1929-2279.2012.01.01.09 .
Du, S., Lawrence, E. J., Strzelecki, D., Rajput, P., Xia, S. J., Gottesman, D. M., & Barr, F. G. (2005). Co-expression of alternatively spliced forms of PAX3, PAX7, PAX3-FKHR and PAX7-FKHR with distinct DNA binding and transactivation properties in rhabdomyosarcoma. International Journal of Cancer, 115(1), 85–92.
doi: 10.1002/ijc.20844
Souabni, A., Jochum, W., & Busslinger, M. (2007). Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus. Blood, 109(1), 281–289.
doi: 10.1182/blood-2006-03-009670
Sugg, S. L., Ezzat, S., Rosen, I. B., Freeman, J. L., & Asa, S. L. (1998). Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. The Journal of Clinical Endocrinology and Metabolism, 83(11), 4116–4122.
pubmed: 9814501
Di Palma, T., Lucci, V., de Cristofaro, T., Filippone, M. G., & Zannini, M. (2014). A role for PAX8 in the tumorigenic phenotype of ovarian cancer cells. BMC Cancer, 14, 292. https://doi.org/10.1186/1471-2407-14-292 .
doi: 10.1186/1471-2407-14-292
pubmed: 24766781
pmcid: 4005813
Poleev, A., Fickenscher, H., Mundlos, S., Winterpacht, A., Zabel, B., Fidler, A., Gruss, P., & Plachov, D. (1992). PAX8, a human paired box gene: Isolation and expression in developing thyroid, kidney and Wilms’ tumors. Development, 116(3), 611–623.
doi: 10.1242/dev.116.3.611
Human Protein Atlas. Retrieved from www.proteinatlas.org .
Yusuf, D., Butland, S. L., Swanson, M. I., Bolotin, E., Ticoll, A., Cheung, W. A., et al. (2012). The transcription factor encyclopedia. Genome Biology, 13(3), R24. https://doi.org/10.1186/gb-2012-13-3-r24 .
doi: 10.1186/gb-2012-13-3-r24
pubmed: 22458515
pmcid: 3439975
Kozmik, Z., Kurzbauer, R., Dörfler, P., & Busslinger, M. (1993). Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates isoforms with different transactivation properties. Molecular and Cellular Biology, 13(10), 6024–6035.
pubmed: 8413205
pmcid: 364662
Poleev, A., Okladnova, O., Musti, A. M., Schneider, S., Royer-Pokora, B., & Plachov, D. (1997). Determination of functional domains of the human transcription factor PAX8 responsible for its nuclear localization and transactivating potential. European Journal of Biochemistry, 247(3), 860–869.
doi: 10.1111/j.1432-1033.1997.00860.x
de Cristofaro, T., Mascia, A., Pappalardo, A., D’Andrea, B., Nitsch, L., & Zannini, M. (2009). Pax8 protein stability is controlled by sumoylation. Journal of Molecular Endocrinology, 42(1), 35–46. https://doi.org/10.1677/JME-08-0100 .
doi: 10.1677/JME-08-0100
pubmed: 18974227
Miccadei, S., Provenzano, C., Mojzisek, M., Natali, P. G., & Civitareale, D. (2005). Retinoblastoma protein acts as Pax 8 transcriptional coactivator. Oncogene, 24(47), 6993–7001.
doi: 10.1038/sj.onc.1208861
Li, C. G., Nyman, J. E., Braithwaite, A. W., & Eccles, M. R. (2011). PAX8 promotes tumor cell growth by transcriptionally regulating E2F1 and stabilizing RB protein. Oncogene, 30(48), 4824–4834. https://doi.org/10.1038/onc.2011.190 .
doi: 10.1038/onc.2011.190
pubmed: 21602887
pmcid: 3229668
Di Palma, T., Filippone, M. G., Pierantoni, G. M., Fusco, A., Soddu, S., & Zannini, M. (2013). Pax8 has a critical role in epithelial cell survival and proliferation. Cell Death & Disease, 4, e729. https://doi.org/10.1038/cddis.2013.262 .
doi: 10.1038/cddis.2013.262
Siehl, J. M., Thiel, E., Heufelder, K., et al. (2003). Possible regulation of Wilms’ tumour gene 1 (WT1) expression by the paired box genes PAX2 and PAX8 and by the haematopoietic transcription factor GATA-1 in human acute myeloid leukaemias. British Journal of Haematology, 123, 235–242.
doi: 10.1046/j.1365-2141.2003.04622.x
Kang, H.-C., Ohmori, M., Harii, N., Endo, T., & Onaya, T. (2001). Pax-8 is essential for regulation of the thyroglobulin gene by transforming growth factor-β1. Endocrinology, 142(1), 267–275. https://doi.org/10.1210/endo.142.1.7918 .
doi: 10.1210/endo.142.1.7918
pubmed: 11145590
Hewitt, S. M., Hamada, S., Monarres, A., Kottical, L. V., Saunders, G. F., & McDonnell, T. J. (1997). Transcriptional activation of the bcl-2 apoptosis suppressor gene by the paired box transcription factor PAX8. Anticancer Research, 17(5A), 3211–3215.
pubmed: 9413150
Raman, P., & Koenig, R. J. (2014). PAX8-PPARγ fusion protein in thyroid carcinoma. Nature Reviews. Endocrinology, 10(10), 616–623.
doi: 10.1038/nrendo.2014.115
Toriyama, A., Mori, T., Sekine, S., Yoshida, A., Hino, O., & Tsuta, K. (2014). Utility of PAX8 mouse monoclonal antibody in the diagnosis of thyroid, thymic, pleural and lung tumours: A comparison with polyclonal PAX8 antibody. Histopathology, 65(4), 465–472. https://doi.org/10.1111/his.12405 .
doi: 10.1111/his.12405
pubmed: 24592933
Damante, G., Tell, G., & Di Lauro, R. (2001). A unique combination of transcription factors controls differentiation of thyroid cells. Progress in Nucleic Acid Research and Molecular Biology, 66, 307–356.
doi: 10.1016/S0079-6603(00)66033-6
Pasca di Magliano, M., Di Lauro, R., & Zannini, M. (2000). Pax8 has a key role in thyroid cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13144–13149.
doi: 10.1073/pnas.240336397
Ozcan, A., Shen, S. S., Hamilton, C., Anjana, K., Coffey, D., Krishnan, B., & Truong, L. D. (2011). PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: A comprehensive immunohistochemical study. Modern Pathology, 24(6), 751–764. https://doi.org/10.1038/modpathol.2011.3 .
doi: 10.1038/modpathol.2011.3
pubmed: 21317881
Kobayashi, A., Shawlot, W., Kania, A., & Behringer, R. R. (2004). Requirement of Lim1 for female reproductive tract development. Development, 131(3), 539–549.
doi: 10.1242/dev.00951
Bowen, N. J., Logani, S., Dickerson, E. B., Kapa, L. B., Akhtar, M., Benigno, B. B., & McDonald, J. F. (2007). Emerging roles for PAX8 in ovarian cancer and endosalpingeal development. Gynecologic Oncology, 104(2), 331–337.
doi: 10.1016/j.ygyno.2006.08.052
Fabbro, D., Di Loreto, C., Beltrami, C. A., Belfiore, A., Di Lauro, R., & Damante, G. (1994). Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Research, 54(17), 4744–4749.
pubmed: 8062273
Hung, N., Chen, Y. J., Taha, A., Olivecrona, M., Boet, R., Wiles, A., Warr, T., Shaw, A., Eiholzer, R., Baguley, B. C., Eccles, M. R., Braithwaite, A. W., Macfarlane, M., Royds, J. A., & Slatter, T. (2014). Increased paired box transcription factor 8 has a survival function in glioma. BMC Cancer, 14, 159. https://doi.org/10.1186/1471-2407-14-159 .
doi: 10.1186/1471-2407-14-159
pubmed: 24602166
pmcid: 4015841
Heidarpour, M., & Tavanafar, Z. (2014). Diagnostic utility of PAX8 in differentiation of mullerian from non-mullerian tumors. Advanced Biomedical Research, 3, 96. https://doi.org/10.4103/2277-9175.129366 .
doi: 10.4103/2277-9175.129366
pubmed: 24800185
pmcid: 4007335
Laury, A. R., Perets, R., Piao, H., Krane, J. F., Barletta, J. A., French, C., Chirieac, L. R., Lis, R., Loda, M., Hornick, J. L., Drapkin, R., & Hirsch, M. S. (2011). A comprehensive analysis of PAX8 expression in human epithelial tumors. The American Journal of Surgical Pathology, 35(6), 816–826. https://doi.org/10.1097/PAS.0b013e318216c112 .
doi: 10.1097/PAS.0b013e318216c112
pubmed: 21552115
Schaner, M. E., Ross, D. T., Ciaravino, G., Sorlie, T., Troyanskaya, O., Diehn, M., Wang, Y. C., Duran, G. E., Sikic, T. L., Caldeira, S., Skomedal, H., Tu, I. P., Hernandez-Boussard, T., Johnson, S. W., O’Dwyer, P. J., Fero, M. J., Kristensen, G. B., Borresen-Dale, A. L., Hastie, T., Tibshirani, R., van de Rijn, M., Teng, N. N., Longacre, T. A., Botstein, D., Brown, P. O., & Sikic, B. I. (2003). Gene expression patterns in ovarian carcinomas. Molecular Biology of the Cell, 14(11), 4376–4386.
doi: 10.1091/mbc.e03-05-0279
Marquez, R. T., Baggerly, K. A., Patterson, A. P., Liu, J., Broaddus, R., Frumovitz, M., et al. (2005). Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clinical Cancer Research, 11, 6116–6126.
doi: 10.1158/1078-0432.CCR-04-2509
Cheung, H. W., Cowley, G. S., Weir, B. A., Boehm, J. S., Rusin, S., Scott, J. A., East, A., Ali, L. D., Lizotte, P. H., Wong, T. C., Jiang, G., Hsiao, J., Mermel, C. H., Getz, G., Barretina, J., Gopal, S., Tamayo, P., Gould, J., Tsherniak, A., Stransky, N., Luo, B., Ren, Y., Drapkin, R., Bhatia, S. N., Mesirov, J. P., Garraway, L. A., Meyerson, M., Lander, E. S., Root, D. E., & Hahn, W. C. (2011). Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proceedings of Natiional Academy of Science of United States of America, 108(30), 12372–12377. https://doi.org/10.1073/pnas.1109363108 .
doi: 10.1073/pnas.1109363108
Rodgers, L. H., hAinmhire, E. Ó., Young, A. N., & Burdette, J. E. (2016). Loss of PAX8 in high-grade serous ovarian cancer reduces cell survival despite unique modes of action in the fallopian tube and ovarian surface epithelium. Oncotarget, 7(22), 32785–32795.
doi: 10.18632/oncotarget.9051
de Cristofaro, T., Di Palma, T., Soriano, A. A., Monticelli, A., Affinito, O., Cocozza, S., & Zannini, M. (2016). Candidate genes and pathways downstream of PAX8 involved in ovarian high-grade serous carcinoma. Oncotarget, 7(27), 41929–41947.
doi: 10.18632/oncotarget.9740
Elias, K. M., Emori, M. M., Westerling, T., Long, H., Budina-Kolomets, A., Li, F., MacDuffie, E., Davis, M. R., Holman, A., Lawney, B., Freedman, M. L., Quackenbush, J., Brown, M., & Drapkin, R. (2016). Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors. JCI Insight, 1(13), e87988.
doi: 10.1172/jci.insight.87988
Kar, S. P., Adler, E., Tyrer, J., Hazelett, D., Anton-Culver, H., Bandera, E. V., Beckmann, M. W., Berchuck, A., Bogdanova, N., Brinton, L., Butzow, R., Campbell, I., Carty, K., Chang-Claude, J., Cook, L. S., Cramer, D. W., Cunningham, J. M., Dansonka-Mieszkowska, A., Doherty, J. A., Dörk, T., Dürst, M., Eccles, D., Fasching, P. A., Flanagan, J., Gentry-Maharaj, A., Glasspool, R., Goode, E. L., Goodman, M. T., Gronwald, J., Heitz, F., Hildebrandt, M. A., Høgdall, E., Høgdall, C. K., Huntsman, D. G., Jensen, A., Karlan, B. Y., Kelemen, L. E., Kiemeney, L. A., Kjaer, S. K., Kupryjanczyk, J., Lambrechts, D., Levine, D. A., Li, Q., Lissowska, J., Lu, K. H., Lubiński, J., Massuger, L. F., McGuire, V., McNeish, I., Menon, U., Modugno, F., Monteiro, A. N., Moysich, K. B., Ness, R. B., Nevanlinna, H., Paul, J., Pearce, C. L., Pejovic, T., Permuth, J. B., Phelan, C., Pike, M. C., Poole, E. M., Ramus, S. J., Risch, H. A., Rossing, M. A., Salvesen, H. B., Schildkraut, J. M., Sellers, T. A., Sherman, M., Siddiqui, N., Sieh, W., Song, H., Southey, M., Terry, K. L., Tworoger, S. S., Walsh, C., Wentzensen, N., Whittemore, A. S., Wu, A. H., Yang, H., Zheng, W., Ziogas, A., Freedman, M. L., Gayther, S. A., Pharoah, P. D., & Lawrenson, K. (2017). Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. British Journal of Cancer, 116(4), 524–535. https://doi.org/10.1038/bjc.2016.426 .
doi: 10.1038/bjc.2016.426
pubmed: 28103614
pmcid: 5318969
Adler, E. K., Corona, R. I., Lee, J. M., Rodriguez-Malave, N., Mhawech-Fauceglia, P., Sowter, H., Hazelett, D. J., Lawrenson, K., & Gayther, S. A. (2017). The PAX8 cistrome in epithelial ovarian cancer. Oncotarget, 8(65), 108316–108332.
doi: 10.18632/oncotarget.22718
Ghannam-Shahbari, D., Jacob, E., Kakun, R. R., Wasserman, T., Korsensky, L., Sternfeld, O., Kagan, J., Bublik, D. R., Aviel-Ronen, S., Levanon, K., Sabo, E., Larisch, S., Oren, M., Hershkovitz, D., & Perets, R. (2018). PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian carcinoma. Oncogene. https://doi.org/10.1038/s41388-017-0040-z .
McKnight, R., Cohen, C., & Siddiqui, M. T. (2010). Utility of paired box gene 8 (PAX8) expression in fluid and fine-needle aspiration cytology: An immunohistochemical study of metastatic ovarian serous carcinoma. Cancer Cytopathology, 118(5), 298–302.
doi: 10.1002/cncy.20089