Structural connectivity predicts sequential processing differences in music perception ability.


Journal

The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110

Informations de publication

Date de publication:
09 2021
Historique:
revised: 08 07 2021
received: 08 12 2020
accepted: 24 07 2021
pubmed: 3 8 2021
medline: 25 9 2021
entrez: 2 8 2021
Statut: ppublish

Résumé

To relate individual differences in music perception ability with whole brain white matter connectivity, we scanned a group of 27 individuals with varying degrees of musical training and assessed musical ability in sensory and sequential music perception domains using the Profile of Music Perception Skills-Short version (PROMS-S). Sequential processing ability was estimated by combining performance on tasks for Melody, Standard Rhythm, Embedded Rhythm, and Accent subscores while sensory processing ability was ascertained via tasks of Tempo, Pitch, Timbre, and Tuning. Controlling for musical training, gender, and years of training, network-based statistics revealed positive linear associations between total PROMS-S scores and increased interhemispheric fronto-temporal and parieto-frontal white matter connectivity, suggesting a distinct segregated structural network for music perception. Secondary analysis revealed two subnetworks for sequential processing ability, one comprising ventral fronto-temporal and subcortical regions and the other comprising dorsal fronto-temporo-parietal regions. A graph-theoretic analysis to characterize the structural network revealed a positive association of modularity of the whole brain structural connectome with the d' total score. In addition, the nodal degree of the right posterior cingulate cortex also showed a significant positive correlation with the total d' score. Our results suggest that a distinct structural network of connectivity across fronto-temporal, cerebellar, and cerebro-subcortical regions is associated with music processing abilities and the right posterior cingulate cortex mediates the connectivity of this network.

Identifiants

pubmed: 34340255
doi: 10.1111/ejn.15407
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6093-6103

Informations de copyright

© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Références

Alain, C., Woods, D. L., & Knight, R. T. (1998). A distributed cortical network for auditory sensory memory in humans. Brain Research, 812, 23-37. https://doi.org/10.1016/S0006-8993(98)00851-8
Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063-1078. https://doi.org/10.1016/j.neuroimage.2015.10.019
Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66, 259-267. https://doi.org/10.1016/S0006-3495(94)80775-1
Belden, A., Zeng, T., Przysinda, E., Anteraper, S. A., Whitfield-Gabrieli, S., & Loui, P. (2020). Improvising at rest: Differentiating jazz and classical music training with resting state functional connectivity. NeuroImage, 207, 116384. https://doi.org/10.1016/j.neuroimage.2019.116384
Boekel, W., Wagenmakers, E. J., Belay, L., Verhagen, J., Brown, S., & Forstmann, B. U. (2015). A purely confirmatory replication study of structural brain-behavior correlations. Cortex, 66, 115-133. https://doi.org/10.1016/j.cortex.2014.11.019
Brauchli, C., Leipold, S., & Jäncke, L. (2020). Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks. NeuroImage, 216, 116513. https://doi.org/10.1016/j.neuroimage.2019.116513
Burkhard, A., Hänggi, J., Elmer, S., & Jäncke, L. (2020). The importance of the fibre tracts connecting the planum temporale in absolute pitch possessors. NeuroImage, 211, 116590. https://doi.org/10.1016/j.neuroimage.2020.116590
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 2844-2854. https://doi.org/10.1093/cercor/bhn042
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968-980. https://doi.org/10.1016/j.neuroimage.2006.01.021
Dhollander, T., & Connelly, A. (2016). A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+ b= 0) diffusion MRI data. In Proc ISMRM (Vol. 24, p. 3010).
Dhollander, T., Raffelt, D., & Connelly, A. (2016). Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. In ISMRM workshop on breaking the barriers of diffusion MRI (Vol. 5). ISMRM.
Dohn, A., Garza-Villarreal, E. A., Chakravarty, M. M., Hansen, M., Lerch, J. P., & Vuust, P. (2015). Gray- and white-matter anatomy of absolute pitch possessors. Cerebral Cortex, 25(5), 1379-1388. https://doi.org/10.1093/cercor/bht334
Engel, A., Hijmans, B. S., Cerliani, L., Bangert, M., Nanetti, L., Keller, P. E., & Keysers, C. (2014). Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture. Human Brain Mapping, 35, 2483-2497. https://doi.org/10.1002/hbm.22343
Ericsson, A., & Pool, R. (2016). Peak: Secrets from the new science of expertise. Houghton Mifflin Harcourt.
Fischl, B. (2012). FreeSurfer. NeuroImage, 62, 774-781.
Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370, 20140092.
Helmbold, N., Rammsayer, T., & Altenmüller, E. (2005). Differences in primary mental abilities between musicians and nonmusicians. Journal of Individual Differences., 26(2), 74-85. https://doi.org/10.1027/1614-0001.26.2.74
Järvelä, I. (2018). Genomics studies on musical aptitude, music perception, and practice. Annals of the new York Academy of Sciences, 1423, 82-91. https://doi.org/10.1111/nyas.13620
Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing artifact removal based on local subvoxel-shifts. Magnetic Resonance in Medicine, 76, 1574-1581. https://doi.org/10.1002/mrm.26054
Kharabian Masouleh, S., Eickhoff, S. B., Hoffstaedter, F., Genon, S., & Alzheimer's Disease Neuroimaging Initiative. (2019). Empirical examination of the replicability of associations between brain structure and psychological variables. eLife, 8, e43464.
Kotz, S. A., Ravignani, A., & Fitch, W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22, 896-910. https://doi.org/10.1016/j.tics.2018.08.002
Law, L. N. C., & Zentner, M. (2012). Assessing musical abilities objectively: Construction and validation of the profile of music perception skills. PLoS ONE, 7, e52508. https://doi.org/10.1371/journal.pone.0052508
Leipold, S., Klein, C., & Jäncke, L. (2020). Musical expertise shapes functional and structural brain networks independent of absolute pitch ability. Journal of Neuroscience, 41, 2496-2511. https://doi.org/10.1523/JNEUROSCI.1985-20.2020
Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2011). Enhanced cortical connectivity in absolute pitch musicians: A model for local hyperconnectivity. Journal of Cognitive Neuroscience., 23(4), 1015-1026. https://doi.org/10.1162/jocn.2010.21500
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 13129-13134. https://doi.org/10.1073/pnas.1811793115
Micheyl, C., Kaernbach, C., & Demany, L. (2008). An evaluation of psychophysical models of auditory change perception. Psychological Review, 115, 1069-1083. https://doi.org/10.1037/a0013572
Moore, E., Schaefer, R. S., Bastin, M. E., Roberts, N., & Overy, K. (2014). Can musical training influence brain connectivity? Evidence from diffusion tensor MRI. Brain Sciences, 4, 405-427. https://doi.org/10.3390/brainsci4020405
Oikkonen, J., Huang, Y., Onkamo, P., Ukkola-Vuoti, L., Raijas, P., Karma, K., Vieland, V. J., & Järvelä, I. (2015). A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Molecular Psychiatry, 20, 275-282. https://doi.org/10.1038/mp.2014.8
Prince, J. B., Thompson, W. F., & Schmuckler, M. A. (2009). Pitch and time, tonality and meter: How do musical dimensions combine? Journal of Experimental Psychology: Human Perception and Performance, 35, 1598.
Raffelt, D, Dhollander, T, Tournier, JD, Tabbara, R, Smith, RE, Pierre, E, Connelly, A. 2017. Bias field correction and intensity normalisation for quantitative analysis of apparent fibre density. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 25, p. 3541).
Rajan, A., Valla, J. M., Alappatt, J. A., Sharda, M., Shah, A., Ingalhalikar, M., & Singh, N. C. (2019). Wired for musical rhythm? A diffusion MRI-based study of individual differences in music perception. Brain Structure & Function, 224, 1711-1722. https://doi.org/10.1007/s00429-019-01868-y
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Seither-Preisler, A., Parncutt, R., & Schneider, P. (2014). Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. The Journal of Neuroscience, 34, 10937-10949. https://doi.org/10.1523/JNEUROSCI.5315-13.2014
Sivagnanam, S, Majumdar, A, Yoshimoto, K, Astakhov, V, Bandrowski, AE, Martone, ME, Carnevale, NT. (2013). Introducing the neuroscience gateway. IWSG, 993.
Smith, R., Raffelt, D., Tournier, J. D., & Connelly, A. (2020). Quantitative streamlines tractography: Methods and inter-subject normalisation. https://osf.io/preprints/c67kn/
Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2015). SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage, 119, 338-351. https://doi.org/10.1016/j.neuroimage.2015.06.092
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143-155. https://doi.org/10.1002/hbm.10062
Taruffi, L., Pehrs, C., Skouras, S., & Koelsch, S. (2017). Effects of sad and happy music on mind-wandering and the default mode network. Scientific Reports, 7, 1-10.
Thaut, M. H., Trimarchi, P. D., & Parsons, L. M. (2014). Human brain basis of musical rhythm perception: Common and distinct neural substrates for meter, tempo, and pattern. Brain Sciences, 4, 428-452. https://doi.org/10.3390/brainsci4020428
Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35, 1459-1472. https://doi.org/10.1016/j.neuroimage.2007.02.016
Tournier, JD, Calamante, F, Connelly, A. (2010). Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In Proc. ISMRM (Vol. 1670). ISMRM.
Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.-H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137
Turker, S., Reiterer, S. M., Seither-Preisler, A., & Schneider, P. (2017). “When music speaks”: Auditory cortex morphology as a neuroanatomical marker of language aptitude and musicality. Frontiers in Psychology, 8, 2096. https://doi.org/10.3389/fpsyg.2017.02096
Vaquero, L., Ramos-Escobar, N., Cucurell, D., François, C., Putkinen, V., Segura, E., Huotilainen, M., Penhune, V., & Rodríguez-Fornells, A. (2021). Arcuate fasciculus architecture is associated with individual differences in pre-attentive detection of unpredicted music changes. NeuroImage, 229, 117759.
Vaquero, L., Ramos-Escobar, N., François, C., Penhune, V., & Rodríguez-Fornells, A. (2018). White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians. NeuroImage, 181, 252-262. https://doi.org/10.1016/j.neuroimage.2018.06.054
Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J., & Fieremans, E. (2016). Denoising of diffusion MRI using random matrix theory. NeuroImage, 142, 394-406. https://doi.org/10.1016/j.neuroimage.2016.08.016
Warrier, C., Wong, P., Penhune, V., Zatorre, R., Parrish, T., Abrams, D., & Kraus, N. (2009). Relating structure to function: Heschl's gyrus and acoustic processing. Journal of Neuroscience., 29, 61-69. https://doi.org/10.1523/JNEUROSCI.3489-08.2009
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. NeuroImage, 53, 1197-1207.
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547-558.
Zendel, B. R., & Alain, C. (2009). Concurrent sound segregation is enhanced in musicians. Journal of Cognitive Neuroscience, 21, 1488-1498. https://doi.org/10.1162/jocn.2009.21140
Zentner, M., & Strauss, H. (2017). Assessing musical ability quickly and objectively: Development and validation of the Short-PROMS and the Mini-PROMS. Annals of the new York Academy of Sciences, 1400, 33-45. https://doi.org/10.1111/nyas.13410

Auteurs

Archith Rajan (A)

Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India.

Apurva Shah (A)

Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India.

Madhura Ingalhalikar (M)

Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India.

Nandini Chatterjee Singh (NC)

Language Literacy and Music Laboratory, National Brain Research Centre (Deemed University), Manesar, India.
Science of Learning, UNESCO Mahatma Gandhi Institute of Education for Peace and Sustainable Development, New Delhi, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH