Magnetic skyrmion bundles and their current-driven dynamics.


Journal

Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273

Informations de publication

Date de publication:
Oct 2021
Historique:
received: 27 10 2020
accepted: 05 07 2021
pubmed: 4 8 2021
medline: 4 8 2021
entrez: 3 8 2021
Statut: ppublish

Résumé

Topological charge Q classifies non-trivial spin textures and determines many of their characteristics. Most abundant are topological textures with |Q| ≤ 1, such as (anti)skyrmions, (anti)merons or (anti)vortices. In this study we created and imaged in real space magnetic skyrmion bundles, that is, multi-Q three-dimensional skyrmionic textures. These textures consist of a circular spin spiral that ties together a discrete number of skyrmion tubes. We observed skyrmion bundles with integer Q values up to 55. We show here that electric currents drive the collective motion of these particle-like textures similar to skyrmions. Bundles with Q ≠ 0 exhibit a skyrmion Hall effect with a Hall angle of ~62°, whereas Q = 0 bundles, the so-called skyrmioniums, propagate collinearly with respect to the current flow, that is, with a skyrmion Hall angle of ~0°. The experimental observation of multi-Q spin textures adds another member to the family of magnetic topological textures, which may serve in future spintronic devices.

Identifiants

pubmed: 34341518
doi: 10.1038/s41565-021-00954-9
pii: 10.1038/s41565-021-00954-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1086-1091

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).
doi: 10.1016/0304-8853(94)90046-9
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
doi: 10.1126/science.1166767
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
doi: 10.1038/nnano.2013.243
Zang, J., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).
doi: 10.1103/PhysRevLett.107.136804
Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).
doi: 10.1038/nphys3883
Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).
doi: 10.1038/nphys4000
Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).
doi: 10.1126/science.1195709
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
doi: 10.1038/nphys2045
Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).
doi: 10.1038/srep06784
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
doi: 10.1038/nnano.2013.29
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).
doi: 10.1038/nnano.2013.176
Zhou, Y. Magnetic skyrmions: intriguing physics and new spintronic device concepts. Natl Sci. Rev. 6, 210–212 (2019).
doi: 10.1093/nsr/nwy109
Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).
doi: 10.1038/s41928-020-0385-0
Yu, X. Z. et al. Motion tracking of 80-nm-size skyrmions upon directional current injections. Sci. Adv. 6, eaaz9744 (2020).
doi: 10.1126/sciadv.aaz9744
Rybakov, F. N. & Kiselev, N. S. Chiral magnetic skyrmions with arbitrary topological charge. Phys. Rev. B 99, 064437 (2019).
doi: 10.1103/PhysRevB.99.064437
Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019).
doi: 10.1038/s41567-019-0476-x
Zhang, X. et al. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys. Rev. B 94, 094420 (2016).
doi: 10.1103/PhysRevB.94.094420
Gobel, B., Schaffer, A. F., Berakdar, J., Mertig, I. & Parkin, S. S. P. Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device. Sci. Rep. 9, 12119 (2019).
doi: 10.1038/s41598-019-48617-z
Zhang, S., Kronast, F., van der Laan, G. & Hesjedal, T. Real-space observation of skyrmionium in a ferromagnet-magnetic topological insulator heterostructure. Nano Lett. 18, 1057–1063 (2018).
doi: 10.1021/acs.nanolett.7b04537
Kind, C. & Foster, D. Magnetic skyrmion binning. Phys. Rev. B 103, L100413 (2021).
doi: 10.1103/PhysRevB.103.L100413
Zeng, Z. et al. Dynamics of skyrmion bags driven by the spin–orbit torque. Appl. Phys. Lett. 117, 172404 (2020).
doi: 10.1063/5.0022527
Chen, R., Li, Y., Pavlidis, V. F. & Moutafis, C. Skyrmionic interconnect device. Phys. Rev. Res. 2, 043312 (2020).
doi: 10.1103/PhysRevResearch.2.043312
Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).
doi: 10.1126/science.1234657
Zheng, F. et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13, 451–455 (2018).
doi: 10.1038/s41565-018-0093-3
Du, H. et al. Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys. Rev. Lett. 120, 197203 (2018).
doi: 10.1103/PhysRevLett.120.197203
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
doi: 10.1063/1.4899186
Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).
doi: 10.1103/RevModPhys.66.1125
Tang, J., Kong, L., Wang, W., Du, H. & Tian, M. Lorentz transmission electron microscopy for magnetic skyrmions imaging. Chin. Phys. B. 28, 087503 (2019).
doi: 10.1088/1674-1056/28/8/087503
Yu, X. et al. Aggregation and collapse dynamics of skyrmions in a non-equilibrium state. Nat. Phys. 14, 832–836 (2018).
doi: 10.1038/s41567-018-0155-3
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
doi: 10.1126/science.1145799
Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).
doi: 10.1038/s41467-018-03378-7
Zeissler, K. et al. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers. Nat. Commun. 11, 428 (2020).
doi: 10.1038/s41467-019-14232-9
Juge, R. et al. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 12, 044007 (2019).
doi: 10.1103/PhysRevApplied.12.044007
Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).
doi: 10.1038/ncomms15765
Litzius, K. et al. The role of temperature and drive current in skyrmion dynamics. Nat. Electron. 3, 30–36 (2020).
doi: 10.1038/s41928-019-0359-2
Zhao, X., Wang, S., Wang, C. & Che, R. Thermal effects on current-related skyrmion formation in a nanobelt. Appl. Phys. Lett. 112, 212403 (2018).
doi: 10.1063/1.5031474
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).
doi: 10.1038/ncomms2442
Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).
doi: 10.1103/PhysRevLett.30.230
Turgut, E., Stolt, M. J., Jin, S. & Fuchs, G. D. Topological spin dynamics in cubic FeGe near room temperature. J. Appl. Phys. 122, 183902 (2017).
doi: 10.1063/1.4997013
Gilmore, K., Idzerda, Y. U. & Stiles, M. D. Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. Phys. Rev. Lett. 99, 027204 (2007).
doi: 10.1103/PhysRevLett.99.027204
Kanazawa, N., Seki, S. & Tokura, Y. Noncentrosymmetric magnets hosting magnetic skyrmions. Adv. Mater. 29, 1603227 (2017).
doi: 10.1002/adma.201603227
Tang, J. et al. Target bubbles in Fe
doi: 10.1021/acsnano.0c04036

Auteurs

Jin Tang (J)

Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China.

Yaodong Wu (Y)

Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China.
Key Laboratory for Photoelectric Detection Science and Technology of Education Department of Anhui Province, School of Physics and Materials Engineering, Hefei Normal University, Hefei, China.

Weiwei Wang (W)

Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.

Lingyao Kong (L)

School of Physics and Materials Science, Anhui University, Hefei, China.

Boyao Lv (B)

Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China.

Wensen Wei (W)

Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China.

Jiadong Zang (J)

Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA.
Materials Science Program, University of New Hampshire, Durham, NH, USA.

Mingliang Tian (M)

Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China.
School of Physics and Materials Science, Anhui University, Hefei, China.

Haifeng Du (H)

Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, China. duhf@hmfl.ac.cn.
Institutes of Physical Science and Information Technology, Anhui University, Hefei, China. duhf@hmfl.ac.cn.

Classifications MeSH