Magnetic skyrmion bundles and their current-driven dynamics.
Journal
Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
27
10
2020
accepted:
05
07
2021
pubmed:
4
8
2021
medline:
4
8
2021
entrez:
3
8
2021
Statut:
ppublish
Résumé
Topological charge Q classifies non-trivial spin textures and determines many of their characteristics. Most abundant are topological textures with |Q| ≤ 1, such as (anti)skyrmions, (anti)merons or (anti)vortices. In this study we created and imaged in real space magnetic skyrmion bundles, that is, multi-Q three-dimensional skyrmionic textures. These textures consist of a circular spin spiral that ties together a discrete number of skyrmion tubes. We observed skyrmion bundles with integer Q values up to 55. We show here that electric currents drive the collective motion of these particle-like textures similar to skyrmions. Bundles with Q ≠ 0 exhibit a skyrmion Hall effect with a Hall angle of ~62°, whereas Q = 0 bundles, the so-called skyrmioniums, propagate collinearly with respect to the current flow, that is, with a skyrmion Hall angle of ~0°. The experimental observation of multi-Q spin textures adds another member to the family of magnetic topological textures, which may serve in future spintronic devices.
Identifiants
pubmed: 34341518
doi: 10.1038/s41565-021-00954-9
pii: 10.1038/s41565-021-00954-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1086-1091Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).
doi: 10.1016/0304-8853(94)90046-9
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
doi: 10.1126/science.1166767
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
doi: 10.1038/nnano.2013.243
Zang, J., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).
doi: 10.1103/PhysRevLett.107.136804
Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).
doi: 10.1038/nphys3883
Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).
doi: 10.1038/nphys4000
Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).
doi: 10.1126/science.1195709
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
doi: 10.1038/nphys2045
Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).
doi: 10.1038/srep06784
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
doi: 10.1038/nnano.2013.29
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).
doi: 10.1038/nnano.2013.176
Zhou, Y. Magnetic skyrmions: intriguing physics and new spintronic device concepts. Natl Sci. Rev. 6, 210–212 (2019).
doi: 10.1093/nsr/nwy109
Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).
doi: 10.1038/s41928-020-0385-0
Yu, X. Z. et al. Motion tracking of 80-nm-size skyrmions upon directional current injections. Sci. Adv. 6, eaaz9744 (2020).
doi: 10.1126/sciadv.aaz9744
Rybakov, F. N. & Kiselev, N. S. Chiral magnetic skyrmions with arbitrary topological charge. Phys. Rev. B 99, 064437 (2019).
doi: 10.1103/PhysRevB.99.064437
Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019).
doi: 10.1038/s41567-019-0476-x
Zhang, X. et al. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys. Rev. B 94, 094420 (2016).
doi: 10.1103/PhysRevB.94.094420
Gobel, B., Schaffer, A. F., Berakdar, J., Mertig, I. & Parkin, S. S. P. Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device. Sci. Rep. 9, 12119 (2019).
doi: 10.1038/s41598-019-48617-z
Zhang, S., Kronast, F., van der Laan, G. & Hesjedal, T. Real-space observation of skyrmionium in a ferromagnet-magnetic topological insulator heterostructure. Nano Lett. 18, 1057–1063 (2018).
doi: 10.1021/acs.nanolett.7b04537
Kind, C. & Foster, D. Magnetic skyrmion binning. Phys. Rev. B 103, L100413 (2021).
doi: 10.1103/PhysRevB.103.L100413
Zeng, Z. et al. Dynamics of skyrmion bags driven by the spin–orbit torque. Appl. Phys. Lett. 117, 172404 (2020).
doi: 10.1063/5.0022527
Chen, R., Li, Y., Pavlidis, V. F. & Moutafis, C. Skyrmionic interconnect device. Phys. Rev. Res. 2, 043312 (2020).
doi: 10.1103/PhysRevResearch.2.043312
Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).
doi: 10.1126/science.1234657
Zheng, F. et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13, 451–455 (2018).
doi: 10.1038/s41565-018-0093-3
Du, H. et al. Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys. Rev. Lett. 120, 197203 (2018).
doi: 10.1103/PhysRevLett.120.197203
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
doi: 10.1063/1.4899186
Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).
doi: 10.1103/RevModPhys.66.1125
Tang, J., Kong, L., Wang, W., Du, H. & Tian, M. Lorentz transmission electron microscopy for magnetic skyrmions imaging. Chin. Phys. B. 28, 087503 (2019).
doi: 10.1088/1674-1056/28/8/087503
Yu, X. et al. Aggregation and collapse dynamics of skyrmions in a non-equilibrium state. Nat. Phys. 14, 832–836 (2018).
doi: 10.1038/s41567-018-0155-3
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
doi: 10.1126/science.1145799
Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).
doi: 10.1038/s41467-018-03378-7
Zeissler, K. et al. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers. Nat. Commun. 11, 428 (2020).
doi: 10.1038/s41467-019-14232-9
Juge, R. et al. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 12, 044007 (2019).
doi: 10.1103/PhysRevApplied.12.044007
Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).
doi: 10.1038/ncomms15765
Litzius, K. et al. The role of temperature and drive current in skyrmion dynamics. Nat. Electron. 3, 30–36 (2020).
doi: 10.1038/s41928-019-0359-2
Zhao, X., Wang, S., Wang, C. & Che, R. Thermal effects on current-related skyrmion formation in a nanobelt. Appl. Phys. Lett. 112, 212403 (2018).
doi: 10.1063/1.5031474
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).
doi: 10.1038/ncomms2442
Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).
doi: 10.1103/PhysRevLett.30.230
Turgut, E., Stolt, M. J., Jin, S. & Fuchs, G. D. Topological spin dynamics in cubic FeGe near room temperature. J. Appl. Phys. 122, 183902 (2017).
doi: 10.1063/1.4997013
Gilmore, K., Idzerda, Y. U. & Stiles, M. D. Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. Phys. Rev. Lett. 99, 027204 (2007).
doi: 10.1103/PhysRevLett.99.027204
Kanazawa, N., Seki, S. & Tokura, Y. Noncentrosymmetric magnets hosting magnetic skyrmions. Adv. Mater. 29, 1603227 (2017).
doi: 10.1002/adma.201603227
Tang, J. et al. Target bubbles in Fe
doi: 10.1021/acsnano.0c04036