Carbon sequestration scenarios in Portugal: which way to go forward?
Aboveground biomass
Climate regulation
Ecosystems services
Global change
InVEST model
Land use land cover
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
03 Aug 2021
03 Aug 2021
Historique:
received:
15
03
2021
accepted:
22
07
2021
entrez:
3
8
2021
pubmed:
4
8
2021
medline:
5
8
2021
Statut:
epublish
Résumé
Assessing carbon storage and sequestration is key for defining effective conservation actions to mitigate climate change. Forest species changes have direct impacts on carbon stocks and may lead to undesirable climate trade-offs. In this paper, we measure aboveground biomass (AGB) and the impact of forest changes on climate regulation through three land policy scenarios by 2030 in continental Portugal. We found that a High intervention scenario, supported by an important increase in "Other coniferous trees" class, will provide 29.5% more of carbon sequestration, whereas a Low intervention scenario, in which there is a moderate increase in all forest classes, will result in an increase of 5.7%. A business as usual (BAU) scenario, supported by an increase in eucalyptus forests and a decrease in autochthonous species, will decrease carbon sequestration (-2.7%), particularly Lisboa, Algarve and North regions. Economic valuation shows that the High intervention scenario will generate the highest economic outcome for climate regulation by 2030. This study provides a spatial-based methodology for monitoring carbon sequestration and new insights about the impact of policies for Green House Gas (GHG) mitigation, supporting the 2030 Sustainable Development Goals achievement.
Identifiants
pubmed: 34341861
doi: 10.1007/s10661-021-09336-z
pii: 10.1007/s10661-021-09336-z
doi:
Substances chimiques
Carbon
7440-44-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
547Subventions
Organisme : Fundação para a Ciência e a Tecnologia
ID : PTDC/CTA-AMB/28438/2017
Organisme : Fundação para a Ciência e a Tecnologia
ID : UIDB/04152/2020
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Alegria, C., Pedro, N., do Carmo Horta, M., Roque, N., & Fernandez, P. (2019). Ecological envelope maps and stand production of eucalyptus plantations and naturally regenerated maritime pine stands in the central inland of Portugal. Forest Ecology and Management, 432, 327–344. https://doi.org/10.1016/j.foreco.2018.09.030
doi: 10.1016/j.foreco.2018.09.030
APA, & CECAC. (2012). Roteiro Nacional de Baixo Carbono 2050 - Análise técnica das opções de transição para uma economia de baixo carbono competitiva em 2050. Alterações Climáticas.
Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230–234. https://doi.org/10.1126/science.aam5962
doi: 10.1126/science.aam5962
Bryan, B. A., Nolan, M., McKellar, L., Connor, J. D., Newth, D., Harwood, T., et al. (2016). Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Global Environmental Change, 38, 130–152. https://doi.org/10.1016/j.gloenvcha.2016.03.002
doi: 10.1016/j.gloenvcha.2016.03.002
Burkhard, B., Kroll, F., Müller, F., & Windhorst, W. (2009). Landscapes’ capacities to provide ecosystem services - a concept for land-cover based assessments. Landscape Online, 15(1), 1–22. https://doi.org/10.3097/LO.200915
doi: 10.3097/LO.200915
Cabral, P., Feger, C. C., Levrel, H., Chambolle, M. M., & Basque, D. (2016). Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux, France. Ecosystem Services, 22, 318–327. https://doi.org/10.1016/j.ecoser.2016.08.005
doi: 10.1016/j.ecoser.2016.08.005
Caetano, M., Igreja, C., Marcelino, F., & Costa, H. (2017). Estatísticas e dinâmicas territoriais multiescala de Portugal Continental 1995–2007–2010 com base na Carta de Uso e Ocupação do Solo (COS). Direcção-Geral do Território (DGT).
Caetano, M., Marcelino, F., Igreja, C., & Girão, I. (2018). A ocupação e uso do solo em 2015 e dinâmicas territoriais 1995–2007–2010–2015 em Portugal Continental. Estudo Dinâmicas Territoriais - COS - 1995–2007–2010–2015.
Carbon Market Watch. (2017). Beyond the EU ETS: Carbon Market Watch Policy Briefing, December 2017. https://carbonmarketwatch.org/publications/beyond-eu-ets/ . Accessed 12 June 2020
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
doi: 10.1111/gcb.12629
Copernicus. (2018). CORINE Land Cover. https://land.copernicus.eu/ . Accessed 20 January 2019
Daily, G. C., Kareiva, P. M., Polasky, S., Ricketts, T. H., & Tallis, H. (2013). Mainstreaming natural capital into decisions. Natural Capital. https://doi.org/10.1093/acprof:oso/9780199588992.003.0001
doi: 10.1093/acprof:oso/9780199588992.003.0001
de Andrade, R. B., Balch, J. K., Parsons, A. L., Armenteras, D., Roman-Cuesta, R. M., & Bulkan, J. (2017). Scenarios in tropical forest degradation: Carbon stock trajectories for REDD+. Carbon Balance and Management, 12(1), 6. https://doi.org/10.1186/s13021-017-0074-0
doi: 10.1186/s13021-017-0074-0
Deng, L., Zhu, G., Tang, Z., & Shangguan, Z. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127–138. https://doi.org/10.1016/j.gecco.2015.12.004
doi: 10.1016/j.gecco.2015.12.004
Direcção-Geral do Território. (1995). Carta de Uso e Ocupação do Solo - 1995.
Direcção-Geral do Território. (2007). Carta de Uso e Ocupação do Solo - 2007.
Direcção-Geral do Território. (2018). Carta de Uso e Ocupação do Solo - 2015.
Duveiller, G., Caporaso, L., Abad-Viñas, R., Perugini, L., Grassi, G., Arneth, A., & Cescatti, A. (2020). Local biophysical effects of land use and land cover change: Towards an assessment tool for policy makers. Land Use Policy, 91, 104382. https://doi.org/10.1016/j.landusepol.2019.104382
doi: 10.1016/j.landusepol.2019.104382
Eggers, J., Lindner, M., Zudin, S., Zaehle, S., & Liski, J. (2008). Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 14(10), 2288–2303. https://doi.org/10.1111/j.1365-2486.2008.01653.x
doi: 10.1111/j.1365-2486.2008.01653.x
European Council. (2014). Conclusions adopted by the European Council meeting. EUCO 169/14 On the 2030 Climate and Energy Policy Framework.
Fernandes, M. M., Fernandes, M. R. D. M., Garcia, J. R., Matricardi, E. A. T., de Almeida, A. Q., & Pinto, A. S. (2020). Assessment of land use and land cover changes and valuation of carbon stocks in the Sergipe semiarid region, Brazil: 1992–2030. Land Use Policy, 99,.
doi: 10.1016/j.landusepol.2020.104795
Fernandes, P. M., & Loureiro, C. (2013). Fine fuels consumption and CO2 emissions from surface fire experiments in maritime pine stands in northern Portugal. Forest Ecology and Management, 291, 344–356. https://doi.org/10.1016/j.foreco.2012.11.037
doi: 10.1016/j.foreco.2012.11.037
Fonseca, F., de Figueiredo, T., Vilela, Â., Santos, R., de Carvalho, A. L., Almeida, E., & Nunes, L. (2019). Impact of tree species replacement on carbon stocks in a Mediterranean mountain area, NE Portugal. Forest Ecology and Management, 439, 181–188. https://doi.org/10.1016/j.foreco.2019.03.002
doi: 10.1016/j.foreco.2019.03.002
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., et al. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435. https://doi.org/10.1111/ele.12189
doi: 10.1111/ele.12189
Harrison, P. A., Dunford, R., Barton, D. N., Kelemen, E., Martín-López, B., Norton, L., et al. (2018). Selecting methods for ecosystem service assessment: A decision tree approach. Ecosystem Services, 29, 481–498. https://doi.org/10.1016/j.ecoser.2017.09.016
doi: 10.1016/j.ecoser.2017.09.016
Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., et al. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9(12), 5125–5142. https://doi.org/10.5194/bg-9-5125-2012
doi: 10.5194/bg-9-5125-2012
ICNF - Instituto da Conservação da Natureza e das Florestas. (2010). 5.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland.
Jacobs, S., Dendoncker, N., Martín-López, B., Barton, D. N. D. N., Gomez-Baggethun, E., Boeraeve, F., et al. (2016). a new valuation school: Integrating diverse values of nature in resource and land use decisions. Ecosystem Services, 22, 213–220. https://doi.org/10.1016/j.ecoser.2016.11.007
doi: 10.1016/j.ecoser.2016.11.007
Keith, H., Mackey, B. G., & Lindenmayer, D. B. (2009). Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, 106(28), 11635–11640. https://doi.org/10.1073/pnas.0901970106
doi: 10.1073/pnas.0901970106
Leh, M. D. K., Matlock, M. D., Cummings, E. C., & Nalley, L. L. (2013). Quantifying and mapping multiple ecosystem services change in West Africa. Agriculture, Ecosystems & Environment, 165, 6–18. https://doi.org/10.1016/j.agee.2012.12.001
doi: 10.1016/j.agee.2012.12.001
Li, Y., Li, M., Li, C., & Liu, Z. (2020). Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific Reports, 10(1), 9952. https://doi.org/10.1038/s41598-020-67024-3
doi: 10.1038/s41598-020-67024-3
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023
doi: 10.1016/j.foreco.2009.09.023
Ma, W., Domke, G. M., Woodall, C. W., & D’Amato, A. W. (2020). Contemporary forest carbon dynamics in the northern U.S. associated with land cover changes. Ecological Indicators, 110, 105901. https://doi.org/10.1016/j.ecolind.2019.105901
Mäkelä, A., del Río, M., Hynynen, J., Hawkins, M. J., Reyer, C., Soares, P., et al. (2012). Using stand-scale forest models for estimating indicators of sustainable forest management. Forest Ecology and Management, 285, 164–178. https://doi.org/10.1016/j.foreco.2012.07.041
doi: 10.1016/j.foreco.2012.07.041
Martin, D. A., Osen, K., Grass, I., Hölscher, D., Tscharntke, T., Wurz, A., & Kreft, H. (2020). Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conservation Letters. https://doi.org/10.1111/conl.12740
doi: 10.1111/conl.12740
Martinez-Harms, M. J., Bryan, B. A., Figueroa, E., Pliscoff, P., Runting, R. K., & Wilson, K. A. (2017). Scenarios for land use and ecosystem services under global change. Ecosystem Services, 25, 56–68. https://doi.org/10.1016/j.ecoser.2017.03.021
doi: 10.1016/j.ecoser.2017.03.021
Mckenzie, E., Rosenthal, A., Bernhardt, J., Girvetz, E., Kovacs, K., Olwero, N., & Toft, J. (2012). Developing scenarios to assess ecosystem service tradeoffs : guidance and case studies for InVEST users. 보고서.
MEA. (2005). MEA - Millenium Ecosystem Assessment, 2005. Ecosystem and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC. https://www.millenniumassessment.org/documents/document.354.aspx.pdf%0Ahttps://www.millenniumassessment.org/documents/document.765.aspx.pdf . Accessed 20 Jun 2020
Naime, J., Mora, F., Sánchez-Martínez, M., Arreola, F., & Balvanera, P. (2020). Economic valuation of ecosystem services from secondary tropical forests: Trade-offs and implications for policy making. Forest Ecology and Management, 473, 118294. https://doi.org/10.1016/j.foreco.2020.118294
doi: 10.1016/j.foreco.2020.118294
Nelson, E., Sander, H., Hawthorne, P., Conte, M., Ennaanay, D., Wolny, S., et al. (2010). Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE, 5(12), e14327. https://doi.org/10.1371/journal.pone.0014327
doi: 10.1371/journal.pone.0014327
Nicholson, E., Fulton, E. A., Brooks, T. M., Blanchard, R., Leadley, P., Metzger, J. P., et al. (2019). Scenarios and models to support global conservation targets. Trends in Ecology & Evolution, 34(1), 57–68. https://doi.org/10.1016/j.tree.2018.10.006
doi: 10.1016/j.tree.2018.10.006
Nunes, A. N. (2019). Mudanças na paisagem e serviços dos ecossistemas. Abandono agrícola e variação no carbono orgânico dos solos. Cadernos de Geografia, (39), 7–16. https://doi.org/10.14195/0871-1623_39_1
Pellikka, P. K. E., Heikinheimo, V., Hietanen, J., Schäfer, E., Siljander, M., & Heiskanen, J. (2018). Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Applied Geography, 94, 178–189. https://doi.org/10.1016/j.apgeog.2018.03.017
doi: 10.1016/j.apgeog.2018.03.017
Posner, S., Verutes, G., Koh, I., Denu, D., & Ricketts, T. (2016). Global use of ecosystem service models. Ecosystem Services, 17, 131–141. https://doi.org/10.1016/j.ecoser.2015.12.003
doi: 10.1016/j.ecoser.2015.12.003
Presidência do Conselho de Ministros. (2015). Resolução do Conselho de Ministros n.
Rosenstock, T. S., Wilkes, A., Jallo, C., Namoi, N., Bulusu, M., Suber, M., et al. (2019). Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agriculture, Ecosystems & Environment, 284, 106569. https://doi.org/10.1016/j.agee.2019.106569
doi: 10.1016/j.agee.2019.106569
Schaefer, M., Goldman, E., Bartuska, A. M., Sutton-Grier, A., & Lubchenco, J. (2015). Nature as capital: Advancing and incorporating ecosystem services in United States federal policies and programs. Proceedings of the National Academy of Sciences, 112(24), 7383–7389. https://doi.org/10.1073/pnas.1420500112
doi: 10.1073/pnas.1420500112
Sil, Â., Fonseca, F., Gonçalves, J., Honrado, J., Marta-Pedroso, C., Alonso, J., et al. (2017). Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(2), 82–104. https://doi.org/10.1080/21513732.2017.1297331
doi: 10.1080/21513732.2017.1297331
Sleeter, B. M., Liu, J., Daniel, C., Rayfield, B., Sherba, J., Hawbaker, T. J., et al. (2018). Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States. Environmental Research Letters, 13(4), 045006. https://doi.org/10.1088/1748-9326/aab540
doi: 10.1088/1748-9326/aab540
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society b: Biological Sciences, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184
doi: 10.1098/rstb.2007.2184
Tallis, H., & Polasky, S. (2011). Assessing multiple ecosystem services: an integrated tool for the real world. In Natural Capital (pp. 34–50). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199588992.003.0003
Tallis, H. T., Rickets, T., Guerry, A. D., Wood, S. A., Sharp, R., Nelson, E., et al. (2018). InVEST 3.6 user’s guide: integrated valuation of environmental services and tradeoffs. Natural Capital Project. The Natural Capital Project. http://ncp-dev.stanford.edu/~dataportal/invest-releases/documentation/current_release/ . Accessed 02 Jul 2020
UN. (n.d.). Sustainable development goals: sustainable development knowledge platform. https://sustainabledevelopment.un.org . Accessed 25 June 2020
UNFCCC. (2015). Adoption of the Paris Agreement: proposal by the President to the United Nations Framework Convention on Climate Change. Conference of the Parties, 21932, 1–32. https://doi.org/FCCC/CP/2015/L.9 . Accessed 15 June 2020
Zhang, R., Zhou, X., Ouyang, Z., Avitabile, V., Qi, J., Chen, J., & Giannico, V. (2019). Estimating aboveground biomass in subtropical forests of China by integrating multisource remote sensing and ground data. Remote Sensing of Environment, 232, 111341. https://doi.org/10.1016/j.rse.2019.111341
doi: 10.1016/j.rse.2019.111341