Gavage-administered lactoferrin promotes palatal expansion stability in a dose-dependent manner.
Journal
Oral diseases
ISSN: 1601-0825
Titre abrégé: Oral Dis
Pays: Denmark
ID NLM: 9508565
Informations de publication
Date de publication:
Jan 2023
Jan 2023
Historique:
revised:
21
07
2021
received:
22
05
2021
accepted:
26
07
2021
pubmed:
4
8
2021
medline:
21
12
2022
entrez:
3
8
2021
Statut:
ppublish
Résumé
To investigate the effects of different lactoferrin concentrations on mid-palatal suture bone remodeling during palatal expansion and relapse in rats. Thirty-two 5-week-old male Wistar rats were randomly divided into four groups: EO (expansion only), E+LF1 (expansion plus 10 mg/kg/day daily LF), E+LF2 (expansion plus 100 mg/kg/day daily LF), and E+LF3 (expansion plus 1 g/kg/day daily LF). Thereafter, micro-computed tomography and micro-morphology of the mid-palatal suture were analyzed on day 7 and day 14, respectively. The arch widths were increased in all the four groups after expansion, and there was no significant difference among them on day 7. After relapse, however, the arch width in the E+LF3 group was significantly larger compared with EO group. In E+LF3 group and E+LF2 group, new bone formation and osteoblast number were enhanced with up-regulated expression of osteocalcin and collagen type I, while the expression of cathepsin K-positive cells was downregulated in E+LF3 group. Lactoferrin gavage administration might increase the stability of palatal expansion and reduce relapse in a concentration-dependent manner by enhancing bone formation and inhibiting resorption. LF administration may be promising for optimizing the maxillary expansion outcome.
Substances chimiques
Lactoferrin
EC 3.4.21.-
Types de publication
Journal Article
Langues
eng
Pagination
254-264Subventions
Organisme : Key Research and Development Project and Applied Basic Research Programs of Science and Technology Department Foundation of Sichuan Provinces
ID : 2019YFS0358
Organisme : National Natural Science Foundation of China
ID : 82071150
Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Blais, A., Malet, A., Benhamous, C.-L., Mikogami, T., Roux, C., & Tome, D. (2012). Oral bovine lactoferrin reduces microarchitectural deterioration of cortical and trabecular bone in ovariectomized mice. Bone, 50, S153.
Caroccia, F., Moscagiuri, F., Falconio, L., Festa, F., & D'Attilio, M. (2020). Early orthodontic treatments of unilateral posterior crossbite: A systematic review. Journal of Clinical Medicine, 10(1), 33. https://doi.org/10.3390/jcm10010033
Cheng, Y., Lv, C., Li, T., Zhang, C., Li, R., Tao, G., Su, C., Huang, L., Zou, S., & Chen, J. (2020). Palatal expansion and relapse in rats: A histologic and immunohistochemical study. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 157(6), 783-791. https://doi.org/10.1016/j.ajodo.2019.06.017
Cheng, Y., Sun, J., Zhou, Z., Pan, J., Zou, S., & Chen, J. (2018). Effects of lactoferrin on bone resorption of midpalatal suture during rapid expansion in rats. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 154(1), 115-127. https://doi.org/10.1016/j.ajodo.2017.09.020
Dai, R., Wu, Z., Chu, H. Y., Lu, J., Lyu, A., Liu, J., & Zhang, G. (2020). Cathepsin K: The action in and beyond bone. Frontiers in Cell and Developmental Biology, 8, 433. https://doi.org/10.3389/fcell.2020.00433
García-Montoya, I. A., Cendón, T. S., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2012). Lactoferrin a multiple bioactive protein: An overview. Biochimica Et Biophysica Acta, 1820(3), 226-236. https://doi.org/10.1016/j.bbagen.2011.06.018
Hou, B., Fukai, N., & Olsen, B. R. (2007). Mechanical force-induced midpalatal suture remodeling in mice. Bone, 40(6), 1483-1493. https://doi.org/10.1016/j.bone.2007.01.019
Hou, J. M., Xue, Y., & Lin, Q. M. (2012). Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacologica Sinica, 33(10), 1277-1284. https://doi.org/10.1038/aps.2012.83
Inubushi, T., Kawazoe, A., Miyauchi, M., Yanagisawa, S., Subarnbhesaj, A., Chanbora, C., Ayuningtyas, N. F., Ishikado, A., Tanaka, E., & Takata, T. (2014). Lactoferrin inhibits infection-related osteoclastogenesis without interrupting compressive force-related osteoclastogenesis. Archives of Oral Biology, 59(2), 226-232. https://doi.org/10.1016/j.archoralbio.2013.11.002
Katebi, N., Kolpakova-Hart, E., Lin, C. Y., & Olsen, B. R. (2012). The mouse palate and its cellular responses to midpalatal suture expansion forces. Orthodontics & Craniofacial Research, 15(3), 148-158. https://doi.org/10.1111/j.1601-6343.2012.01547.x
Kawazoe, A., Inubushi, T., Miyauchi, M., Ishikado, A., Tanaka, E., Tanne, K., & Takata, T. (2013). Orally administered liposomal lactoferrin inhibits inflammation-related bone breakdown without interrupting orthodontic tooth movement. Journal of Periodontology, 84(10), 1454-1462. https://doi.org/10.1902/jop.2012.120508
Komori, T. (2020). Functions of osteocalcin in bone, pancreas, testis, and muscle. International Journal of Molecular Sciences, 21(20), 7513. https://doi.org/10.3390/ijms21207513
Lee, A. J., Hodges, S., & Eastell, R. (2000). Measurement of osteocalcin. Annals of Clinical Biochemistry, 37(Pt 4), 432-446. https://doi.org/10.1177/000456320003700402
Liu, S. S., Xu, H., Sun, J., Kontogiorgos, E., Whittington, P. R., Misner, K. G., Kyung, H. M., Buschang, P. H., & Opperman, L. A. (2013). Recombinant human bone morphogenetic protein-2 stimulates bone formation during interfrontal suture expansion in rabbits. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, its Constituent Societies, and the American Board of Orthodontics, 144(2), 210-217. https://doi.org/10.1016/j.ajodo.2013.03.017
Liu, S., Xu, T., & Zou, W. (2015). Effects of rapid maxillary expansion on the midpalatal suture: A systematic review. European Journal of Orthodontics, 37(6), 651-655. https://doi.org/10.1093/ejo/cju100
Liu, Y., Tang, Y., Xiao, L., Liu, S. S., & Yu, H. (2014). Suture cartilage formation pattern varies with different expansive forces. American Journal of Orthodontics and Dentofacial Orthopedics: Official Publication of the American Association of Orthodontists, Its Constituent Societies, and the American Board of Orthodontics, 146(4), 442-450. https://doi.org/10.1016/j.ajodo.2014.06.016
Naot, D., Grey, A., Reid, I. R., & Cornish, J. (2005). Lactoferrin-a novel bone growth factor. Clinical Medicine & Research, 3(2), 93-101. https://doi.org/10.3121/cmr.3.2.93
Srivastava, S. C., Mahida, K., Agarwal, C., Chavda, R. M., & Patel, H. A. (2020). Longitudinal stability of rapid and slow maxillary expansion: A systematic review. The Journal of Contemporary Dental Practice, 21(9), 1068-1072. https://doi.org/10.5005/jp-journals-10024-2932
Uysal, T., Amasyali, M., Olmez, H., Enhos, S., Karslioglu, Y., & Gunhan, O. (2011). Effect of vitamin C on bone formation in the expanded inter-premaxillary suture. Early bone changes. Journal of Orofacial Orthopedics = Fortschritte Der Kieferorthopadie: Organ/official Journal Deutsche Gesellschaft Fur Kieferorthopadie, 72(4), 290-300. https://doi.org/10.1007/s00056-011-0034-3
Vandrovcova, M., Douglas, T. E., Heinemann, S., Scharnweber, D., Dubruel, P., & Bacakova, L. (2015). Collagen-lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation. Journal of Biomedical Materials Research Part A, 103(2), 525-533. https://doi.org/10.1002/jbm.a.35199
Walli, J., Buki, K. G., Nieminen-Pihala, V., Saarimaki, J., Vaananen, K., & Maatta, J. A. (2012). Milk whey contains bioactive proteins capable to inhibit osteoclast formation and bone resorption. Bone, 50, S89. https://doi.org/10.1016/j.bone.2012.02.264
Wang, H., Sun, W., Ma, J., Pan, Y., Wang, L., & Zhang, W. B. (2015). Biglycan mediates suture expansion osteogenesis via potentiation of Wnt/β-catenin signaling. Journal of Biomechanics, 48(3), 432-440. https://doi.org/10.1016/j.jbiomech.2014.12.032
Wu, B. H., Kou, X. X., Zhang, C., Zhang, Y. M., Cui, Z., Wang, X. D., Liu, Y., Liu, D. W., & Zhou, Y. H. (2017). Stretch force guides finger-like pattern of bone formation in suture. PLoS One, 12(5), e0177159. https://doi.org/10.1371/journal.pone.0177159
Yoshimaki, T., Sato, S., Tsunori, K., Shino, H., Iguchi, S., Arai, Y., Ito, K., & Ogiso, B. (2013). Bone regeneration with systemic administration of lactoferrin in non-critical-sized rat calvarial bone defects. Journal of Oral Science, 55(4), 343-348. https://doi.org/10.2334/josnusd.55.343
Zahrowski, J. J., & Turley, P. K. (1992). Force magnitude effects upon osteoprogenitor cells during premaxillary expansion in rats. The Angle Orthodontist, 62(3), 197-202. https://doi.org/10.1043/0003-3219(1992)062<0197:FMEUOC>2.0.CO;2