Uncertainty propagation for deterministic models of biochemical networks using moment equations and the extended Kalman filter.

biochemical networks extended Kalman filter moment closure moment equations uncertainty propagation

Journal

Journal of the Royal Society, Interface
ISSN: 1742-5662
Titre abrégé: J R Soc Interface
Pays: England
ID NLM: 101217269

Informations de publication

Date de publication:
08 2021
Historique:
entrez: 3 8 2021
pubmed: 4 8 2021
medline: 11 8 2021
Statut: ppublish

Résumé

Differential equation models of biochemical networks are frequently associated with a large degree of uncertainty in parameters and/or initial conditions. However, estimating the impact of this uncertainty on model predictions via Monte Carlo simulation is computationally demanding. A more efficient approach could be to track a system of low-order statistical moments of the state. Unfortunately, when the underlying model is nonlinear, the system of moment equations is infinite-dimensional and cannot be solved without a moment closure approximation which may introduce bias in the moment dynamics. Here, we present a new method to study the time evolution of the desired moments for nonlinear systems with polynomial rate laws. Our approach is based on solving a system of low-order moment equations by substituting the higher-order moments with Monte Carlo-based estimates from a small number of simulations, and using an extended Kalman filter to counteract Monte Carlo noise. Our algorithm provides more accurate and robust results compared to traditional Monte Carlo and moment closure techniques, and we expect that it will be widely useful for the quantification of uncertainty in biochemical model predictions.

Identifiants

pubmed: 34343452
doi: 10.1098/rsif.2021.0331
pmc: PMC8331248
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

20210331

Références

Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5
pubmed: 18077424
J Chem Phys. 2015 Nov 14;143(18):185101
pubmed: 26567686
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032713
pubmed: 24730880
Math Biosci. 2013 Dec;246(2):305-14
pubmed: 23535194
BMC Syst Biol. 2015 Nov 21;9:85
pubmed: 26589144
Brief Bioinform. 2006 Dec;7(4):364-74
pubmed: 17107967
Nature. 2009 May 21;459(7245):428-32
pubmed: 19363473
PLoS Comput Biol. 2015 Aug 28;11(8):e1004457
pubmed: 26317784
J R Soc Interface. 2018 Oct 31;15(147):
pubmed: 30381346
J Chem Phys. 2015 Sep 7;143(9):094107
pubmed: 26342359
J Comput Chem. 2005 Jul 15;26(9):941-8
pubmed: 15858828
Nat Rev Mol Cell Biol. 2010 Jun;11(6):414-26
pubmed: 20495582
Bioinformatics. 2006 Feb 15;22(4):514-5
pubmed: 16317076
Mol Cell. 2008 Apr 11;30(1):11-25
pubmed: 18406323
Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6
pubmed: 12522261
BMC Syst Biol. 2010 Oct 28;4:144
pubmed: 21029410
PLoS Comput Biol. 2016 Feb 09;12(2):e1004706
pubmed: 26859137
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5818-23
pubmed: 10823939
Mol Microbiol. 2008 Jun;68(5):1196-215
pubmed: 18363790
J Chem Phys. 2011 Oct 28;135(16):165102
pubmed: 22047267

Auteurs

Tamara Kurdyaeva (T)

Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, Netherlands.

Andreas Milias-Argeitis (A)

Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, Netherlands.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH