Synthesis, Characterization, Antitumor Potential, BSA and DNA Binding Properties, and Molecular Docking Study of Some Novel 3-Hydroxy-3- Pyrrolin-2-Ones.
3-hydroxy-3-pyrrolin-2-ones
BSAbinding study
DNA binding study
biological evaluation
mechanisms of cytotoxic activity
molecular docking study
Journal
Medicinal chemistry (Shariqah (United Arab Emirates))
ISSN: 1875-6638
Titre abrégé: Med Chem
Pays: Netherlands
ID NLM: 101240303
Informations de publication
Date de publication:
2022
2022
Historique:
received:
21
08
2020
revised:
05
12
2020
accepted:
07
02
2021
pubmed:
5
8
2021
medline:
3
3
2022
entrez:
4
8
2021
Statut:
ppublish
Résumé
In order to make progress in discovering the new agents for cancer treatment with improved properties and considering the fact that 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, we tested series of eleven novels 1,5-diaryl-4-(2- thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones for their antitumor potential. All novel compounds were characterized by spectral (IR, NMR, MS) and elemental analysis. All novel 3-hydroxy-3-pyrrolin-2-ones were screened for their cytotoxic activity on two cancer cell lines, SW480 and MDA-MB 231, and non-transformed fibroblasts (MRC-5). Compounds B8, B9, and B10 showed high cytotoxicity on SW480 cells together with good selectivity towards MRC-5 cells. It is important to empathize that the degree of selectivity of B8 and B10 was high (SI = 5.54 and 12.09, respectively). Besides, we explored the mechanisms of cytotoxicity of novel derivatives, B8, B9, and B10. The assay showed that tested derivatives induce an apoptotic type of cell death in SW480 cells, with a minor percent of necrotic cells. Additionally, to better understand the suitability of the compounds for potential use as anticancer medicaments, we studied their interactions with biomacromolecules (DNA or BSA). The results indicated that the tested compounds have a great affinity to displace EB from the EB-DNA complex through intercalation. Also, DNA and BSA molecular docking study was performed to predict the binding mode and the interaction region of the compounds. Achieved results indicate that our compounds have the potential to become candidates for use as medicaments.
Sections du résumé
BACKGROUND
In order to make progress in discovering the new agents for cancer treatment with improved properties and considering the fact that 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, we tested series of eleven novels 1,5-diaryl-4-(2- thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones for their antitumor potential.
METHODS
All novel compounds were characterized by spectral (IR, NMR, MS) and elemental analysis. All novel 3-hydroxy-3-pyrrolin-2-ones were screened for their cytotoxic activity on two cancer cell lines, SW480 and MDA-MB 231, and non-transformed fibroblasts (MRC-5).
RESULTS
Compounds B8, B9, and B10 showed high cytotoxicity on SW480 cells together with good selectivity towards MRC-5 cells. It is important to empathize that the degree of selectivity of B8 and B10 was high (SI = 5.54 and 12.09, respectively). Besides, we explored the mechanisms of cytotoxicity of novel derivatives, B8, B9, and B10. The assay showed that tested derivatives induce an apoptotic type of cell death in SW480 cells, with a minor percent of necrotic cells. Additionally, to better understand the suitability of the compounds for potential use as anticancer medicaments, we studied their interactions with biomacromolecules (DNA or BSA). The results indicated that the tested compounds have a great affinity to displace EB from the EB-DNA complex through intercalation. Also, DNA and BSA molecular docking study was performed to predict the binding mode and the interaction region of the compounds.
CONCLUSION
Achieved results indicate that our compounds have the potential to become candidates for use as medicaments.
Identifiants
pubmed: 34344294
pii: MC-EPUB-116987
doi: 10.2174/1573406417666210803094127
doi:
Substances chimiques
Antineoplastic Agents
0
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
337-352Subventions
Organisme : Serbian Ministry of Education, Science and Technological Development
ID : 451-03-68/2020-14/200122
Informations de copyright
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.