Tumorigenesis in neurofibromatosis type 1: role of the microenvironment.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
09 2021
Historique:
received: 10 06 2021
accepted: 21 07 2021
revised: 12 07 2021
pubmed: 5 8 2021
medline: 30 12 2021
entrez: 4 8 2021
Statut: ppublish

Résumé

Neurofibromatosis Type 1 (NF1) is one of the most common inherited neurological disorders and predisposes patients to develop benign and malignant tumors. Neurofibromas are NF1-associated benign tumors but can cause substantial discomfort and disfigurement. Numerous studies have shown that neurofibromas arise from the Schwann cell lineage but both preclinical mouse models and clinical trials have demonstrated that the neurofibroma tumor microenvironment contributes significantly to tumorigenesis. This offers the opportunity for targeting new therapeutic vulnerabilities to treat neurofibromas. However, a translational gap exists between deciphering the contribution of the neurofibroma tumor microenvironment and clinically applying this knowledge to treat neurofibromas. Here, we discuss the key cellular and molecular components in the neurofibroma tumor microenvironment that can potentially be targeted therapeutically to advance neurofibroma treatment.

Identifiants

pubmed: 34345017
doi: 10.1038/s41388-021-01979-z
pii: 10.1038/s41388-021-01979-z
pmc: PMC8713356
mid: NIHMS1764146
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

5781-5787

Subventions

Organisme : NCI NIH HHS
ID : R01 CA166593
Pays : United States
Organisme : NCI NIH HHS
ID : U54 CA196519
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Le LQ, Parada LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene. 2007;26:4609–16.
pubmed: 17297459 pmcid: 2760340 doi: 10.1038/sj.onc.1210261
Bergoug, M, M Doudeau, F Godin, C Mosrin, B Vallee, and H Benedetti, Neurofibromin structure, functions and regulation. Cells. 2020;9:2365.
Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol. 2014;13:834–43.
pubmed: 25030515 doi: 10.1016/S1474-4422(14)70063-8
Brosseau JP, Pichard DC, Legius EH, Wolkenstein P, Lavker RM, Blakeley JO, et al. The biology of cutaneous neurofibromas: consensus recommendations for setting research priorities. Neurology. 2018;91:S14–S20.
pubmed: 29987131 doi: 10.1212/WNL.0000000000005788
Dombi E, Solomon J, Gillespie AJ, Fox E, Balis FM, Patronas N, et al. NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology. 2007;68:643–7.
pubmed: 17215493 doi: 10.1212/01.wnl.0000250332.89420.e6
Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39:311–4.
pubmed: 12011145 pmcid: 1735122 doi: 10.1136/jmg.39.5.311
Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296:920–2.
pubmed: 11988578 pmcid: 3024710 doi: 10.1126/science.1068452
Jessen KR, Mirsky R, Lloyd AC. Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol. 2015;7:a020487.
pubmed: 25957303 pmcid: 4484967 doi: 10.1101/cshperspect.a020487
Zheng H, Chang L, Patel N, Yang J, Lowe L, Burns DK, et al. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell. 2008;13:117–28.
pubmed: 18242512 doi: 10.1016/j.ccr.2008.01.002
Joseph NM, Mosher JT, Buchstaller J, Snider P, McKeever PE, Lim M, et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell. 2008;13:129–40.
pubmed: 18242513 pmcid: 2566828 doi: 10.1016/j.ccr.2008.01.003
Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF. Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res. 2011;71:4686–95.
pubmed: 21551250 pmcid: 3145496 doi: 10.1158/0008-5472.CAN-10-4577
Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ. Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell. 2014;26:695–706.
pubmed: 25446898 pmcid: 4254535 doi: 10.1016/j.ccell.2014.09.009
Saito H, Yoshida T, Yamazaki H, Suzuki N. Conditional N-rasG12V expression promotes manifestations of neurofibromatosis in a mouse model. Oncogene. 2007;26:4714–9.
pubmed: 17237809 doi: 10.1038/sj.onc.1210250
Chen Z, Mo J, Brosseau JP, Shipman T, Wang Y, Liao CP, et al. Spatiotemporal loss of NF1 in Schwann cell lineage leads to different types of cutaneous neurofibroma susceptible to modification by the hippo pathway. Cancer Disco. 2019;9:114–29.
doi: 10.1158/2159-8290.CD-18-0151
Mo, J, C Anastasaki, Z Chen, T Shipman, J Papke, K Yin, et al., Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest. 2021;131:e139807.
Radomska KJ, Coulpier F, Gresset A, Schmitt A, Debbiche A, Lemoine S, et al. Cellular origin, tumor progression, and pathogenic mechanisms of cutaneous neurofibromas revealed by mice with Nf1 knockout in boundary cap cells. Cancer Disco. 2019;9:130–47.
doi: 10.1158/2159-8290.CD-18-0156
Liao CP, Booker RC, Brosseau JP, Chen Z, Mo J, Tchegnon E, et al. Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J Clin Invest. 2018;128:2848–61.
pubmed: 29596064 pmcid: 6025974 doi: 10.1172/JCI99424
Brosseau JP, Liao CP, Wang Y, Ramani V, Vandergriff T, Lee M, et al. NF1 heterozygosity fosters de novo tumorigenesis but impairs malignant transformation. Nat Commun. 2018;9:5014.
pubmed: 30479396 pmcid: 6258697 doi: 10.1038/s41467-018-07452-y
Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell. 2008;13:105–16.
pubmed: 18242511 pmcid: 2846699 doi: 10.1016/j.ccr.2007.12.027
Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv. 2020;2:i23–i32.
pubmed: 32642730
Ribeiro S, Napoli I, White IJ, Parrinello S, Flanagan AM, Suter U, et al. Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve. Cell Rep. 2013;5:126–36.
pubmed: 24075988 doi: 10.1016/j.celrep.2013.08.033
Rice FL, Houk G, Wymer JP, Gosline SJC, Guinney J, Wu J, et al. The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS ONE. 2019;14:e0216527.
pubmed: 31107888 pmcid: 6527217 doi: 10.1371/journal.pone.0216527
Parrinello S, Noon LA, Harrisingh MC, Wingfield Digby P, Rosenberg LH, Cremona CA, et al. NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev. 2008;22:3335–48.
pubmed: 19056885 pmcid: 2600763 doi: 10.1101/gad.490608
Liao CP, Pradhan S, Chen Z, Patel AJ, Booker RC, Le LQ. The role of nerve microenvironment for neurofibroma development. Oncotarget. 2016;7:61500–8.
pubmed: 27517146 pmcid: 5308667 doi: 10.18632/oncotarget.11133
Fricker FR, Bennett DL. The role of neuregulin-1 in the response to nerve injury. Future Neurol. 2011;6:809–22.
pubmed: 22121335 pmcid: 3223410 doi: 10.2217/fnl.11.45
Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N, et al. Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci. 2011;31:3225–33.
pubmed: 21368034 pmcid: 3059576 doi: 10.1523/JNEUROSCI.2568-10.2011
Ronellenfitsch MW, Harter PN, Kirchner M, Heining C, Hutter B, Gieldon L, et al. Targetable ERBB2 mutations identified in neurofibroma/schwannoma hybrid nerve sheath tumors. J Clin Invest. 2020;130:2488–95.
pubmed: 32017710 pmcid: 7190903 doi: 10.1172/JCI130787
Harboe M, Torvund-Jensen J, Kjaer-Sorensen K, Laursen LS. Ephrin-A1-EphA4 signaling negatively regulates myelination in the central nervous system. Glia. 2018;66:934–50.
pubmed: 29350423 doi: 10.1002/glia.23293
Linneberg, C, M Harboe, and LS Laursen, Axo-Glia Interaction preceding cns myelination is regulated by bidirectional Eph-Ephrin signaling. ASN Neuro. 2015;7:1759091415602859.
Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci. 2009;12:839–47.
pubmed: 19525946 pmcid: 2782951 doi: 10.1038/nn.2323
Yang FC, Ingram DA, Chen S, Hingtgen CM, Ratner N, Monk KR, et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/- mast cells. J Clin Invest. 2003;112:1851–61.
pubmed: 14679180 doi: 10.1172/JCI19195
Yang FC, Chen S, Clegg T, Li X, Morgan T, Estwick SA, et al. Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet. 2006;15:2421–37.
pubmed: 16835260 doi: 10.1093/hmg/ddl165
Riccardi VM. Mast-cell stabilization to decrease neurofibroma growth. Preliminary experience ketotifen. Arch Dermatol. 1987;123:1011–6.
pubmed: 3115189 doi: 10.1001/archderm.1987.01660320053011
Riccardi VM. Ketotifen suppression of NF1 neurofibroma growth over 30 years. Am J Med Genet A. 2015;167:1570–7.
pubmed: 25974154 doi: 10.1002/ajmg.a.37045
Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, et al. Nf1-dependent tumors require a microenvironment containing Nf1+/- and c-kit-dependent bone marrow. Cell. 2008;135:437–48.
pubmed: 18984156 pmcid: 2788814 doi: 10.1016/j.cell.2008.08.041
Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY, Hutchins GD, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13:1218–24.
pubmed: 23099009 pmcid: 5380388 doi: 10.1016/S1470-2045(12)70414-X
Prada CE, Jousma E, Rizvi TA, Wu J, Dunn RS, Mayes DA, et al. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 2013;125:159–68.
pubmed: 23099891 doi: 10.1007/s00401-012-1056-7
Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, et al. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep. 2017;7:43315.
pubmed: 28256556 pmcid: 5335359 doi: 10.1038/srep43315
Peltonen J, Penttinen R, Larjava H, Aho HJ. Collagens in neurofibromas and neurofibroma cell cultures. Ann NY Acad Sci. 1986;486:260–70.
pubmed: 3105391 doi: 10.1111/j.1749-6632.1986.tb48079.x
Atit RP, Crowe MJ, Greenhalgh DG, Wenstrup RJ, Ratner N. The Nf1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol. 1999;112:835–42.
pubmed: 10383727 pmcid: 2854506 doi: 10.1046/j.1523-1747.1999.00609.x
Widemann BC, Babovic-Vuksanovic D, Dombi E, Wolters PL, Goldman S, Martin S, et al. Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer. 2014;61:1598–602.
pubmed: 24753394 pmcid: 7681788 doi: 10.1002/pbc.25041
Babovic-Vuksanovic D, Ballman K, Michels V, McGrann P, Lindor N, King B, et al. Phase II trial of pirfenidone in adults with neurofibromatosis type 1. Neurology. 2006;67:1860–2.
pubmed: 17035676 doi: 10.1212/01.wnl.0000243231.12248.67
Dundr P, Povysil C, Tvrdik D. Actin expression in neural crest cell-derived tumors including schwannomas, malignant peripheral nerve sheath tumors, neurofibromas and melanocytic tumors. Pathol Int. 2009;59:86–90.
pubmed: 19154261 doi: 10.1111/j.1440-1827.2008.02333.x
Brosseau JP, Sathe AA, Wang Y, Nguyen T, Glass DA 2nd, Xing C, et al. Human cutaneous neurofibroma matrisome revealed by single-cell RNA sequencing. Acta Neuropathol Commun. 2021;9:11.
pubmed: 33413690 pmcid: 7792184 doi: 10.1186/s40478-020-01103-4
Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–81.
pubmed: 24336287 pmcid: 3868929 doi: 10.1038/nature12783
Kadono T, Soma Y, Takehara K, Nakagawa H, Ishibashi Y, Kikuchi K. The growth regulation of neurofibroma cells in neurofibromatosis type-1: increased responses to PDGF-BB and TGF-beta 1. Biochem Biophys Res Commun. 1994;198:827–34.
pubmed: 8117287 doi: 10.1006/bbrc.1994.1118
Mashour GA, Ratner N, Khan GA, Wang HL, Martuza RL, Kurtz A. The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene. 2001;20:97–105.
pubmed: 11244508 doi: 10.1038/sj.onc.1204026
Misa, K, Y Tanino, X Wang, T Nikaido, M Kikuchi, Y Sato, et al., Involvement of midkine in the development of pulmonary fibrosis. Physiol Rep. 2017;5:e13383.
Dolivo DM, Larson SA, Dominko T. Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev. 2017;38:49–58.
pubmed: 28967471 pmcid: 5705586 doi: 10.1016/j.cytogfr.2017.09.003
Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15:255–73.
pubmed: 15207816 doi: 10.1016/j.cytogfr.2004.03.006
Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Front Med (Lausanne). 2015;2:59.
Wehner D, Tsarouchas TM, Michael A, Haase C, Weidinger G, Reimer MM, et al. Wnt signaling controls pro-regenerative collagen XII in functional spinal cord regeneration in zebrafish. Nat Commun. 2017;8:126.
pubmed: 28743881 pmcid: 5526933 doi: 10.1038/s41467-017-00143-0
Moleirinho S, Patrick C, Tilston-Lunel AM, Higginson JR, Angus L, Antkowiak M, et al. Willin, an upstream component of the hippo signaling pathway, orchestrates mammalian peripheral nerve fibroblasts. PLoS ONE. 2013;8:e60028.
pubmed: 23593160 pmcid: 3620498 doi: 10.1371/journal.pone.0060028
Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell. 2010;143:145–55.
pubmed: 20869108 doi: 10.1016/j.cell.2010.08.039
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587:555–66.
pubmed: 33239795 doi: 10.1038/s41586-020-2938-9 pmcid: 8034822
Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz AP, Roskelley C, et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol. 1995;129:591–603.
pubmed: 7730398 doi: 10.1083/jcb.129.3.591
Mascharak, S, HE desJardins-Park, MF Davitt, M Griffin, MR Borrelli, AL Moore, et al., Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021;372:eaba2374.
Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122:4243–56.
pubmed: 23041627 pmcid: 3484450 doi: 10.1172/JCI63930
Sun K, Park J, Gupta OT, Holland WL, Auerbach P, Zhang N, et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun. 2014;5:3485.
pubmed: 24647224 doi: 10.1038/ncomms4485
Wishart, AL, SJ Conner, JR Guarin, JP Fatherree, Y Peng, RA McGinn, et al., Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci Adv. 2020;6:eabc3175.
Harigai R, Sakai S, Nobusue H, Hirose C, Sampetrean O, Minami N, et al. Tranilast inhibits the expression of genes related to epithelial-mesenchymal transition and angiogenesis in neurofibromin-deficient cells. Sci Rep. 2018;8:6069.
pubmed: 29666462 pmcid: 5904101 doi: 10.1038/s41598-018-24484-y
Hagel C, Behrens T, Prehm P, Schnabel C, Glatzel M, Friedrich RE. Hyaluronan in intra-operative edema of NF1-associated neurofibromas. Neuropathology. 2012;32:406–14.
pubmed: 22129111 doi: 10.1111/j.1440-1789.2011.01276.x
Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res. 2009;15:7462–8.
pubmed: 20008845 pmcid: 2796593 doi: 10.1158/1078-0432.CCR-09-0479
Kim Y, Lee YS, Choe J, Lee H, Kim YM, Jeoung D. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem. 2008;283:22513–28.
pubmed: 18577517 doi: 10.1074/jbc.M708319200
Gorlewicz A, Wlodarczyk J, Wilczek E, Gawlak M, Cabaj A, Majczynski H, et al. CD44 is expressed in non-myelinating Schwann cells of the adult rat, and may play a role in neurodegeneration-induced glial plasticity at the neuromuscular junction. Neurobiol Dis. 2009;34:245–58.
pubmed: 19385056 doi: 10.1016/j.nbd.2009.01.011
Jaakkola S, Peltonen J, Riccardi V, Chu ML, Uitto J. Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures. J Clin Invest. 1989;84:253–61.
pubmed: 2500456 pmcid: 303977 doi: 10.1172/JCI114148
Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell. 2002;13:3546–59.
pubmed: 12388756 pmcid: 129965 doi: 10.1091/mbc.e02-01-0048
Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, et al. Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem. 2005;280:18871–80.
pubmed: 15677465 doi: 10.1074/jbc.M410762200
Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382:1430–42.
pubmed: 32187457 pmcid: 7305659 doi: 10.1056/NEJMoa1912735
Wang-Gillam A. Targeting stroma: a tale of caution. J Clin Oncol. 2019;37:1041–3.
pubmed: 30860950 doi: 10.1200/JCO.19.00056

Auteurs

Chunhui Jiang (C)

Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.

Renee M McKay (RM)

Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.

Lu Q Le (LQ)

Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA. Lu.Le@UTSouthwestern.edu.
Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA. Lu.Le@UTSouthwestern.edu.
UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA. Lu.Le@UTSouthwestern.edu.
Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA. Lu.Le@UTSouthwestern.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH