Task-based assessment of binned and list-mode SPECT systems.
List-mode
SPECT
binning
objective assessment of image quality
quantification
reconstruction
Journal
Proceedings of SPIE--the International Society for Optical Engineering
ISSN: 0277-786X
Titre abrégé: Proc SPIE Int Soc Opt Eng
Pays: United States
ID NLM: 101524122
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
entrez:
4
8
2021
pubmed:
5
8
2021
medline:
5
8
2021
Statut:
ppublish
Résumé
In SPECT, list-mode (LM) format allows storing data at higher precision compared to binned data. There is significant interest in investigating whether this higher precision translates to improved performance on clinical tasks. Towards this goal, in this study, we quantitatively investigated whether processing data in LM format, and in particular, the energy attribute of the detected photon, provides improved performance on the task of absolute quantification of region-of-interest (ROI) uptake in comparison to processing the data in binned format. We conducted this evaluation study using a DaTscan brain SPECT acquisition protocol, conducted in the context of imaging patients with Parkinson's disease. This study was conducted with a synthetic phantom. A signal-known exactly/background-known-statistically (SKE/BKS) setup was considered. An ordered-subset expectation-maximization algorithm was used to reconstruct images from data acquired in LM format, including the scatter-window data, and including the energy attribute of each LM event. Using a realistic 2-D SPECT system simulation, quantification tasks were performed on the reconstructed images. The results demonstrated improved quantification performance when LM data was used compared to binning the attributes in all the conducted evaluation studies. Overall, we observed that LM data, including the energy attribute, yielded improved performance on absolute quantification tasks compared to binned data.
Identifiants
pubmed: 34345113
doi: 10.1117/12.2582266
pmc: PMC8325874
mid: NIHMS1727728
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : NIBIB NIH HHS
ID : R21 EB024647
Pays : United States
Références
Neuroimage. 2004 Nov;23(3):956-66
pubmed: 15528096
IEEE Nucl Sci Symp Conf Rec (1997). 2013 Oct-Nov;2013:
pubmed: 26347396
Phys Med Biol. 2016 Apr 7;61(7):2780-800
pubmed: 26982626
J Opt Soc Am A. 1992 May;9(5):649-58
pubmed: 1588452
Proc SPIE Int Soc Opt Eng. 2015 Apr 13;9412:94120R
pubmed: 26430291
J Opt Soc Am A Opt Image Sci Vis. 1997 Nov;14(11):2914-23
pubmed: 9379247
J Opt Soc Am A Opt Image Sci Vis. 2020 Mar 1;37(3):450-457
pubmed: 32118929
IEEE Trans Med Imaging. 2017 Apr;36(4):917-929
pubmed: 28026757
Phys Med Biol. 1997 Dec;42(12):2493-516
pubmed: 9434303
Phys Med Biol. 2015 Sep 21;60(18):7359-85
pubmed: 26350439
IEEE Trans Med Imaging. 2002 Sep;21(9):1040-50
pubmed: 12564872
IEEE Trans Med Imaging. 2014 Jan;33(1):38-47
pubmed: 23981533
Biomed Opt Express. 2013 Sep 09;4(10):2107-23
pubmed: 24156068
Opt Express. 1999 Jan 4;4(1):33-42
pubmed: 19396254
Inverse Probl. 2020 Aug;36(8):
pubmed: 33071423
Med Phys. 2013 Aug;40(8):082506
pubmed: 23927351
Proc SPIE Int Soc Opt Eng. 2013;8668:
pubmed: 26236067
Phys Med Biol. 2019 Sep 18;64(18):185007
pubmed: 31470417
IEEE Trans Med Imaging. 2005 Aug;24(8):969-76
pubmed: 16092329
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9758-65
pubmed: 8234311
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:646-650
pubmed: 33072242