Moderate grazing is the best measure to achieve the optimal conservation and soil resource utilization (case study: Bozdaghin rangelands, North Khorasan, Iran).
Erodibility
Grazing intensity
Rangeland
Soil properties
Vegetation
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
03 Aug 2021
03 Aug 2021
Historique:
received:
20
04
2021
accepted:
22
07
2021
entrez:
4
8
2021
pubmed:
5
8
2021
medline:
6
8
2021
Statut:
epublish
Résumé
The study of the variability of physical and chemical factors of soil due to different intensities of livestock grazing can help in the management and maintenance of soil and vegetation. Accordingly, the effect of livestock grazing intensities on soil properties and vegetation in Bozdaghin rangelands of North Khorasan province was investigated. To investigate the effect of different livestock grazing intensities, Three 5-hectare plots in the study area were determined under different treatments (ungrazed (UG), moderate grazing (MG), and heavy grazing (HG)), and the effect of three grazing intensities on vegetation and soil physicochemical and erodibility properties (SPEP) was evaluated. The soil sampling process was performed at depths of 0-15, 15-30 cm and SPEP including soil saturation moisture (SSM), soil texture (percentage of clay, sand, and silt), absorbable potassium (K), electrical conductivity (EC), soil organic matter (SOM), absorbable phosphorus (P), acidity (pH), and bulk density were evaluated, and Soil Erodibility Index (SEI) was calculated by implementing the modified clay ratio relation. To assess the impact of various grazing intensities on all measured characteristics, multivariate analysis of variance (MANOVA) and Duncan tests were utilized to compare the means and their grouping. The results showed that HG compared to MG causes worrying consequences in the first soil depth. Also with increasing grazing intensity, plant production percentage (P < 0.05) and vegetation density (P < 0.01) decreased, and the amount of bare soil (P < 0.01) increased. Also, with increasing grazing intensity, the amount of pH, EC, clay, saturated moisture, and N decreased (P < 0.01), but the amount of silt, sand, K, P, calcium (Ca), lime, and SOM increased (P < 0.01). UG improves soil quality, MG intensity causes optimal conservation and utilization of soil resources, and HG intensity causes severe changes in rangeland soil properties. In areas with MG intensity, due to the increase of the percentage of vegetation (an increase of SOM and prevents the direct impact of raindrops on the soil aggregates) and as a result improvement of soil structure and texture, an increase of water infiltration, and decrease of runoff, and the rate of soil erodibility and water erosion, the rangeland soil decreases and results in sustainable production. This results in optimal conservation and utilization of soil resources. So to sustainably exploit and balance the conservation of biodiversity, livestock production, and soil carbon and nitrogen management, MG is recommended.
Identifiants
pubmed: 34345952
doi: 10.1007/s10661-021-09334-1
pii: 10.1007/s10661-021-09334-1
doi:
Substances chimiques
Soil
0
Carbon
7440-44-0
Nitrogen
N762921K75
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
549Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Aarons, S. R., Hosseini, H. M., Dorling, L., & Gourley, C. J. P. (2004). Dung decomposition in temperate dairy pastures as a contribution to plant available soil phosphorus. Australian Journal of Soil Research, 42(1), 115–123. https://doi.org/10.1071/SR03009
doi: 10.1071/SR03009
Aeinebeygi, S., & Khaleghi, M. R. (2016). An assessment of biennial enclosure effects on range production, condition and trend (case study: Taftazan Rangeland, Shirvan). International Journal of Forest, Soil and Erosion, 6(2), 33–40.
Agha M. F. M., Zahedi, G., Farahpour, M., & Khorasani, N. (2008). Influence of exclosure and grazing on the soil organic carbon and soil bulk density (Case study in the central Alborze south slopes rangelands). Journal of Agricultural Sciences of Iran, 4(5), 375–381.
Alizadeh, M. J., Kavianpour, M. R., Danesh, M., Adolf, J., Shamshirband, S., & Chau, K. W. (2018). Effect of river flow on the quality of estuarine and coastal waters using machine learning models. Engineering Applications of Computational Fluid Mechanics, 12(1), 810–823. https://doi.org/10.1080/19942060.2018.1528480
doi: 10.1080/19942060.2018.1528480
Alvaro, P., & Silva, D. (2003). Evaluation of soil compaction in an irrigated short – duration grazing system. Soil and Tillage Research, 75, 83–90.
Amiri, F., Ariapour, A., & Fadai, S. (2008). Effects of livestock grazing on vegetation composition and soil moisture properties in grazed and non-grazed range site. Journal of Biological Sciences, 8, 1289–1297. https://doi.org/10.3923/jbs.2008.1289.1297
doi: 10.3923/jbs.2008.1289.1297
Andrew, M. H. (1988). Grazing impacts in relation to livestock watering points. Trends in Research Ecology Evolution, 3, 336–339.
Angassa, A. (2014). Effects of grazing intensity and bush encroachment on herbaceous species and rangeland condition in southern Ethiopia. Land Degradation & Development, 25(5), 438–451. https://doi.org/10.1002/ldr.2160
doi: 10.1002/ldr.2160
Archer, S. R., & Smeins, F. E. (1991). Ecosystem-level processes. Chap 5. In R. K. Heitschmidt & J. W. Stuth (Eds.), emopenGrazing Management: an Ecological Perspectiveemclose (p. 257). Portland: Timber Press.
Aryafar, A., Khosravi, V., Zarepourfard, H., & Rooki, R. (2019). Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain Eastern Iran. Environmental Earth Sciences, 78, 69. https://doi.org/10.1007/s12665-019-8092-8
doi: 10.1007/s12665-019-8092-8
Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E., & Chau, K. W. (2020). Groundwater quality assessment for sustainable drinking and irrigation. Sustainability, 12, 177. https://doi.org/10.3390/su12010177
doi: 10.3390/su12010177
Bari, F., Wood, M. K., & Murray, L. (1995). Livestock grazing impacts on interrill erosion in Pakistan. Journal of Range Management, 48, 251–257.
doi: 10.2307/4002429
Berkes, F., Colding, J., & Folke, C. (2003). Navigating social-ecological systems: Building resilience for complexity and change. Cambridge University Press.
Binkley, D., Singer, F., Kaye, M., & Rochelle, R. (2003). Influence of elk grazing on soil properties in Rocky Mountain National Park. Journal of Forest Ecology Management, 185(3), 239–247. https://doi.org/10.1016/S0378-1127(03)00162-2
doi: 10.1016/S0378-1127(03)00162-2
Black, C. A., Evans, D. D., Ensminger, L. E., White, G., & Clark, F. E. (1965). Methods of soil analysis, Part 1, Physical analysis, American Society of Agronomy, Madison, WI.
Blackburn, W.H., Knight, R.W., & Wood, M.K. (1982). Impacts of grazing on watersheds. Texas Agricultural Experiment Station. http://hdl.handle.net/1969.1/175134 .
Blanco-Canqui, H., Lal, R., Owens, L. B., et al. (2005) Strength properties and organic carbon of soils in the North Appalachian Region. Soil Science Society of America Journal, 69, 663–673.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Journal of Agronomy, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
doi: 10.2134/agronj1962.00021962005400050028x
Bower, C. A. R., Reitemeier, F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251–262. https://doi.org/10.1097/00010694-195204000-00001
doi: 10.1097/00010694-195204000-00001
Cambardella, C., & Elliott, E. (1992). Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Science Society of America Journal, 56, 777–783. https://doi.org/10.2136/sssaj1992.03615995005600030017x
Campo, J., Andreu, V., Gimeno-Garcia, E., Gonzalez, O., & Rubio, J. L. (2006). Occurrence of soil erosion after repeated experimental fires in a Mediterranean environment. Geomorphology, 82, 376–387. https://doi.org/10.1016/j.geomorph.2006.05.014
Dastgheyb Shirazi, S. S., Ahmadi, A., Abdi, N., Toranj, H., & Khaleghi, M. R. (2021). Long-term grazing exclosure: Implications on water erosion and soil physicochemical properties (case study: Bozdaghin rangelands, North Khorasan, Iran). Environmental Monitoring and Assessment, 193, 51. https://doi.org/10.1007/s10661-020-08819-9
doi: 10.1007/s10661-020-08819-9
George, M., Larsen, R., McDougald, N., Gerlach, J., & Fulgham, K., (2004). Cattle grazing has varying impacts on stream-channel erosion in oak woodlands. California Agriculture, 58, 138–143.
Gholami, V., Torkaman, J., & Khaleghi, M. R. (2017). Dendrohydrogeology in paleohydrogeologic studies. Advances in Water Resources, 110, 19–28.
doi: 10.1016/j.advwatres.2017.10.004
Gholami, V., Booij, M. J., Tehrani, E. N., & Hadian, M. A. (2018). Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. CATENA, 163, 210–218. https://doi.org/10.1016/j.catena.2017.12.027
doi: 10.1016/j.catena.2017.12.027
Gholami, V., Sahour, H., & Hadian Amri, M. A. (2021). Soil erosion modeling using erosion pins and artificial neural networks. CATENA, 196, 104902. https://doi.org/10.1016/j.catena.2020.104902
doi: 10.1016/j.catena.2020.104902
Fallatah, O. A. (2020). Groundwater quality patterns and spatiotemporal change in depletion in the regions of the Arabian Shield and Arabian Shelf. Arabian Journal for Science and Engineering, 45, 341–350. https://doi.org/10.1007/s13369-019-04069-1
doi: 10.1007/s13369-019-04069-1
Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill Texas. Journal of Hydrology, 210(14), 259–281. https://doi.org/10.1016/S0022-1694(98)00187-5
doi: 10.1016/S0022-1694(98)00187-5
Han, G., Hao, X., Zhao, M., Wang, M., Ellert, B. H., Willms, W., & Wang, M. (2008). Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystems and Environment, 125(1–4), 21–32. https://doi.org/10.1016/j.agee.2007.11.009
doi: 10.1016/j.agee.2007.11.009
Hante, A., Jafari, M., Zargham, N., & Zare Chahuki, M. (2005). The effect of Atriplex canescens planting on rangelands soil of Zarande Saveh. Journal of Natural Resources and Development, 68, 60–64.
Harrington, G. N., Wilson, A. D., & Young, M. D. (1984). Management of Australia's rangeland. CSIRO, 354. Hui, D., Jackson, R.B., (2005). Geographic and interan-nual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytologist, 169, 85–93.
He, N., Wu, L., Wang, Y., & Han, X. (2009). Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China. Geoderma, 150, 302–308.
doi: 10.1016/j.geoderma.2009.02.004
Hiernaux, P. H., Bielders, C. L., Valentin, C., Bationo, A., & Fernandez-Rivera, S. (1999). Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. Journal of Arid Environments, 41, 231–245.
doi: 10.1006/jare.1998.0475
Hui, D., & Jackson, R. B., (2005). Geographic and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytologist 169, 85–93.
Jafari, S. M., Zarre, S., Alavipanah, S. K., & Ghahremaninejad, F. (2015). Functional turnover from lowland to montane forests: Evidence from the Hyrcanian forest in northern Iran. iForest - Biogeosciences and Forestry, 8, 359–367.
Jeddi, K., & Chaieb, M. (2010). Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environment of south Tunisia. Flora, 205, 184–189.
doi: 10.1016/j.flora.2009.03.002
Johansen, M. P., Hakonson, T. E., & Breshears, D. D. (2001). Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands. Hydrological Processes, 15, 2953–2965. https://doi.org/10.1002/hyp.384
John, D., & William, P. (2000). Impact of grazing strategies on soil compaction Tektran. United States Department of Agriculture, 4, 7-13.
Junsomboon, J., & Jakmunee, J. (2011). Determination of potassium, sodium, and total alkalies in Portland cement, fly ash, admixtures, and water of concrete by a simple flow injection flame photometric system. Journal of Analytical Methods in Chemistry, 1-9. https://doi.org/10.1155/2011/742656
Kavianpour, A. H., Heshmati, G. A., & Hoseini, S. H. (2015). Investigation of Changes in Rangeland Soil Characteristics and its Functional Attributes Affected by Different Grazing Intensities (Case study: mountainous rangelands of Nesho, Mazandaran province). Water and soil Sciences, 25(1–4), 157–168.
Kazemi, S. M., Karimzadeh, H. R., Tarkesh Esfahani, M., & Bashari, H. (2018). Effects of long-term exclosure and rest-rotation grazing system on some soil physicochemical properties in semi-arid rangelands (Case study: Semi-steppe rangelands of Hamzavi research station, Semirom of Isfahan). Iranian Journal of Range and Desert Research, 25(3), 536–546. https://doi.org/10.22092/ijrdr.2018.117805
doi: 10.22092/ijrdr.2018.117805
Khaleghi, M. R. (2018). Application of dendroclimatology in evaluation of climatic changes. Journal of Forest Science, 64, 139–147.
Kizza, S., Totolo, O., Perkins, J., & Areola, O. (2010). Analysis of persistence soil nutrient status in abandoned cattle kraals in a semi-arid area in Botswana. Scientific Research and Essays, 523(23), 3613–3622.
Kohandel, A., Arzani, H., & Tavassol, M. (2009). Effects of different grazing intensities on soil nitrogen, phosphorus, potassium and organic matter. Iranian Journal of Watershed Sciences and Technology, 3(6), 59–66.
Kohandel, A., Arzani, H., & Hosseini Tavassol, M. (2011). Effect of grazing intensity on soil and vegetation characteristics using principal components analysis. Iranian Journal of Range and Desert Research, 17(4), 518–526.
Kosmas, C., Detsis, V., Karamesouti, M., Kounalaki, K., Vassiliou, P., et al. (2015). Exploring long-term impact of grazing management on land degradation in the socio-ecological system of Asteroussia Mountains, Greece. Land, 4, 541–559. https://doi.org/10.3390/land4030541
doi: 10.3390/land4030541
Kumar, S., Reichle, R., Koster, R., Crow, W., & Peters-Lidard, C. (2009). Role of subsurface physics in the assimilation of surface soil moisture observations. Journal of Hydrometeorology, 10, 1534–1547. https://doi.org/10.1175/2009JHM1134.1
Kumbasli, M., Makineci, E., & Cakir, M. (2010). Long term effects of red deer (Cervus elaphus) grazing on soil in a breeding area. Journal of Environmental Biology, 31(1–2), 185–188.
Larsen, I. J., MacDonald, L. H., Brown, E., Rough, D., Welsh, M. J., Pietraszek, J. H., Libohova, Z., et al. (2009). Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? Soil Science Society of America Journal, 73, 1393–1407. https://doi.org/10.2136/sssaj2007.0432
Li, W., Huang, H. Z., Zhang, Z. N. & Wu, G. L. (2011). Effects of Grazing on the Soil Properties and C and N Storage in Relation to Allocation in an Alpine Meadow. Journal of Soil Science and Plant Nutrition, 11(4): 27–39.
Liacos, L. G. (1962). Water yield as influenced by degree of grazing in the California winter grasslands. Journal of Range Management Archives, 15, 67–72.
Lin, Y., Hong, M., Han, G., Zhao, M., Bai, Y., & Chang, S. X. (2010). Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agriculture, Ecosystems & Environment, 138(3–4), 282–292. https://doi.org/10.1016/j.agee.2010.05.013
doi: 10.1016/j.agee.2010.05.013
Ludwig J., Tongway D., Freudenberger D., Noble D., & Hodginson D. (1997). Land scape ecology and management, principle of Australia, srangeland. CSIRO publication. pp. 123.
Ma, L., Yuan, F., Liang, H., & Rong, Y. (2014). The effects of grazing management strategies on the vegetation, diet quality, intake and performance of free grazing sheep. Livestock Sciences, 161, 185–192.
doi: 10.1016/j.livsci.2013.12.025
Manier, D. J., & Hobbs, N. T. (2007). Large herbivores in sagebrush steppe ecosystems: Livestock and wild ungulates influence structure and function. Oecologia, 152, 739–750.
doi: 10.1007/s00442-007-0689-z
Mclean, E. O. (1988). Soil pH and lime requirement. In: page, AL, editor. Methods of Soil an analysis Part, American Society of Agronomy, vol.2. Soil Science Society of America, Madison, Wis.: p. 199–224.
Mcnaughton, S. J. (1979). Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. The American Naturalist, 113(5), 691–703. https://doi.org/10.1086/283426
doi: 10.1086/283426
Medina-Roldan, E., Paz-Ferreiro, J., & Bardgett, R. D. (2012). Grazing exclusion affect soil and plant communities, but has no impact on soil carbon storage in an upland grassland. Agriculture, Ecosystems and Environment, 149, 118–123. https://doi.org/10.1016/j.agee.2011.12.012
doi: 10.1016/j.agee.2011.12.012
Mirza Ali, A., & Mesdaghi, M. (2006). The effect of grazing on rangeland vegetation and soil salinization Gomishan in Golestan province. Journal of Agriculture and Natural Resources, 13(2), 194–202.
Mitchell, J. E. (2010). Criteria and indicators for sustainable rangeland management. Cooperative Extension Service Publication SM-56. Laramie, WY: University of Wyoming. 227 p.
Moghadam, M. R. (1998). Range and range management. Tehran University press, Iran.
Mohammad, A. (2009). Effect of grazing on soil properties at southern part of west bank rangeland. Hebron University Research Journal, 4(1), 35–53. http://dspace.hebron.edu:80/xmlui/handle/123456789/83
Motevalli, A., Pourghasemi, H. R., Hashemi, H., & Gholami, V. (2019). Assessing the vulnerability of groundwater to salinization using GIS-based data-mining techniques in a coastal aquifer. Spatial Modeling in GIS and R for Earth and Environmental Sciences, 547–571.
Mudahir, O., & Taskin, O. (2003). Overgrazing effect on rangeland soil properties. International conference on sustainable land use and management, Canakkle, Turkey.
Mut, H., & Ayan, I. (2011). Effects of different improvement methods on some soil properties in a secondary succession rangeland. Journal of Biodiversity and Environmental Sciences, 5(13), 11–16.
Nawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling A Review. Agronomy for Sustainable Development, 33, 291–309. https://doi.org/10.1007/s13593-011-0071-8
doi: 10.1007/s13593-011-0071-8
Niknahad Gharemakher, H., Aghtabye, A., & Akbarlou, M. (2018). Effects of grazing exclusure on some soil properties, erodibility and carbon sequestration (Case study: Bozdaghin rangelands, North Khorasan, Iran). Iranian Journal of Range and Desert Research, 24(4), 708–718. https://doi.org/10.22092/ijrdr.2017.114058
doi: 10.22092/ijrdr.2017.114058
Noy-Meir, I., Gutman, M., & Kaplan, Y. (1989). Responses of Mediterranean grassland plants to grazing and protection. Journal of Ecology, 77, 290–310.
doi: 10.2307/2260930
Ozaslan, A., Parlak, M., Blanco-Canqui, H., Schacht, W. H., Guretzky, J. A., & Mamo, M. (2015). Patch burning: implications on water erosion and soil properties. Journal of Environmental Quality, 44, 903–909. https://doi.org/10.2134/jeq2014.12.0523
Page, A. L., Miller R. H., & Keeney D. R. (1982). Methods of Soil Analysis, part 2, chemical and microbiological properties, American Society of Agronomy, Inc. Soil Science of America, Madison, WI.
Pei, S. H., Fu, H., & Wan, C. (2008). Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture, Ecosystems and Environment, 124(1–2), 33–39. https://doi.org/10.1016/j.agee.2007.08.008
doi: 10.1016/j.agee.2007.08.008
Rahmanian, S., Hejda, M., Ejtehadi, H., Farzam, M., Memariani, F., & Pysek, P. (2019). Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecology and Evolution, 9, 8225–8237. https://doi.org/10.1002/ece3.5396
doi: 10.1002/ece3.5396
Raiesi, F., & Riahi, M. (2014). The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semiarid rangelands. Ecological Indicators, 41, 145–154. https://doi.org/10.1016/j.ecolind.2014.01.040
doi: 10.1016/j.ecolind.2014.01.040
Reeder, J. D., Schuman, G. E., Morgan, J. A., & Lecain, D. R. (2004). Response of organic and inorganic carbon and nitrogen to long-term grazing of the short grass steppe. Environmental Management, 33(4), 485–495. https://doi.org/10.1007/s00267-003-9106-5
doi: 10.1007/s00267-003-9106-5
Ren, H., Schönbach, P., Wan, H., Gierus, M., & Taube, F. (2012). Effects of grazing intensity and environmental factors on species composition and diversity in typical steppe of Inner Mongolia China. PLoS ONE, 7(12), e52180. https://doi.org/10.1371/journal.pone.0052180
doi: 10.1371/journal.pone.0052180
Rhee, K. C. (2001). Determination of total nitrogen. Current Protocols in Food Analytical Chemistry, 1, B1.2.1-B1.2.9. https://doi.org/10.1002/0471142913.fab0102s00
Riginos, C., & Hoffman, M. T. (2003). Changes in population biology of two succulent shrubs along a grazing gradient. Applied Ecology, 40(4), 615–625. https://doi.org/10.1046/j.1365-2664.2003.00826.x
doi: 10.1046/j.1365-2664.2003.00826.x
Robbins, C. W., & Wiegand, C. L. (1990). Field and laboratory measurements. In K.K. Tanji. (ed.) Agricultural salinity assessment and management. ASAE, New York. pp. 201-219.
Sahour, H., Gholami, V., Vazifedan, M., & Saeedi, S. (2021). Machine learning applications for water-induced soil erosion modeling and mapping. Soil and Tillage Research, 211, 105032. https://doi.org/10.1016/j.still.2021.105032
doi: 10.1016/j.still.2021.105032
Sato, J. H., de Figueiredo, C. C., Marchão, R. L., Madari, B. E., Benedito, L. E. C., et al. (2014). Methods of soil organic carbon determination in Brazilian savannah soils. Scientia Agricola, 71(4), 302–308. https://doi.org/10.1590/0103-9016-2013-0306
doi: 10.1590/0103-9016-2013-0306
Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., & Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications, 9(1), 65–71. https://doi.org/10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2
doi: 10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2
Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., et al. (2017). Soil compaction effects on soil health and cropproductivity: An overview. Environmental Science and Pollution Research, 24, 10056–10067. https://doi.org/10.1007/s11356-017-8421-y
doi: 10.1007/s11356-017-8421-y
Shamshirband, S., Jafari Nodoushan, E., Adolf, J.E., Abdul Manaf, A., Mosavi, A., Chau, K. W. (2019). "Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters,". Engineering Applications of Computational Fluid Mechanics, 13(1), 91–101.
Sharifi, J., & Akbarzadeh, M. (2016). Investigating the impact of exclosure on vegetation changes and restoration of rangeland utility indicator species in Ardabil Province. Journal of Rangeland, 4(10), 376–386.
Shende, S., & Chau, K. W. (2019). Forecasting safe distance of a pumping well for effective riverbank filtration. Journal of Hazardous Toxic, and Radioactive Waste-ASCE, 23(2), 04018040. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000434
doi: 10.1061/(ASCE)HZ.2153-5515.0000434
Sick, D. (2008). Social contexts and consequences of institutional change in common-pool resource management. Society & Natural Resources, 21(2), 94–105. https://doi.org/10.1080/08941920701681524
doi: 10.1080/08941920701681524
Somda, Z. C., Powell, J. M., & Bationo, A. (1997). Soil pH and nitrogen changes following cattle and sheep urine deposition. Communications in Soil Science and Plant Analysis, 28(15–16), 1253–1268. https://doi.org/10.1080/00103629709369872
doi: 10.1080/00103629709369872
Steffens, M., Kölbl, A., Totsche, K.U., & Kögel-Knabner, I. (2008). Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma, 143(1–2), 63–72. https://doi.org/10.1016/j.geoderma.2007.09.004
Stewart, A., & Frank, D. (2008). Short sampling intervals reveal very rapid root turnover in temperate grass land. Oecologia 157, 453–458.
Su, Y. Z., Li, L. Y., & Zhao, H. L. (2006). Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, Inner Mongolia, northern China. Biogeochemistry, 79, 297–314. https://doi.org/10.1007/s10533-005-5273-1
doi: 10.1007/s10533-005-5273-1
Tamartash, R., Jalilvand, H., & Tatian, M. R. (2007). Effects of grazing on chemical soil properties and vegetation cover (case study: Kojour Rangelands, Noushahr, Islamic Republic of Iran). Pakistan Journal of Biological Sciences, 10, 4391–4398. https://doi.org/10.3923/pjbs.2007.4391.4398
doi: 10.3923/pjbs.2007.4391.4398
Teague, W. R., Dowhower, S. L., Baker, S. A., Ansley, R. J., Kreuter, U. P., Conover, D. M., et al. (2010). Soil and herbaceous plant responses to summer patch burns under continuous and rotational grazing. Agriculture, Ecosystems & Environment, 137, 113–123. https://doi.org/10.1016/j.agee.2010.01.010
Teague, W. R., Duke, S. E., Waggoner, J. A., Dowhower, S. L., & Gerrard, S. A. (2008). Rangeland vegetation and soil response to summer patch fires under continuous grazing. Arid Land Research and Management, 22, 228–241. https://doi.org/10.1080/15324980802183210
Vaillant, G. C., Pierzynski, G. M., Ham, J. M., & De Rouchey, J. (2009). Nutrient accumulation below cattle feedlot pens in Kansas. Journal of Environmental Quality, 38(3), 909–918. https://doi.org/10.2134/jeq2008.0205
doi: 10.2134/jeq2008.0205
Varamesh, S. (2009). Effectuality of forestation on soil carbon sequestration and mitigate climate change. First International Conference of the World Soil Erosion and Conservation. May 27-30, 2009. Tara Mountain. Serbia.
Varvani, J., & Khaleghi, M. R. (2019). A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers. Acta Geophysica, 67(1), 205–214.
doi: 10.1007/s11600-018-0228-9
Wang, Z., Johnson, D. A., Rong, Y., & Wang, K. (2016). Grazing effects on soil characteristics and vegetation of grassland in northern China. Solid Earth, 7(1), 55–65. https://doi.org/10.5194/se-7-55-2016
doi: 10.5194/se-7-55-2016
Warren, S. D., Thurow, T. L., Blackburn, W. H., & Garaza, N. E. (1986). The influence of livestock trampling under intensive rotation grazing on soil hydrologic characteristics. Journal of Range Management, 39, 491–495.
doi: 10.2307/3898755
Wolf, K. M., Baldwin, R. A., & Barry, S. (2017). Compatibility of Livestock Grazing and Recreational Use on Coastal California Public Lands: Importance, Interactions, and Management Solutions. Rangeland Ecology & Management, 70(2), 192–201. https://doi.org/10.1016/j.rama.2016.08.008
Wu, C. L., & Chau, K. W. (2011). Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399(3–4), 394–409. https://doi.org/10.1016/j.jhydrol.2011.01.017
doi: 10.1016/j.jhydrol.2011.01.017
Yao, X., Wu, J., Gong, X., Lang, X., & Wang, C. (2019). Grazing exclosures solely are not the best methods for sustaining alpine grasslands. PeerJ, 7, e6462. https://doi.org/10.7717/peerj.6462
doi: 10.7717/peerj.6462
Yong-Zhong, S., Yu-Lin, C., Jian-Yuan, L., & Wen-Zhi, Z. (2005). Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. CATENA, 59(3), 267–278. https://doi.org/10.1016/j.catena.2004.09.001
doi: 10.1016/j.catena.2004.09.001
Xie, Y., & Wittig, R. (2004). The impact of grazing intensity on soil characteristics of Stipa grandis and Stipa bungeana steppe in northern China (autonomous region of Ningxia). Acta Oecologica, 25(3), 197–204. https://doi.org/10.1016/j.actao.2004.01.004
doi: 10.1016/j.actao.2004.01.004
Zhan, T., Zhang, Z., Sun, J., Liu, M., Zhang, X., Peng, F., et al. (2020). Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Applied Soil Ecology, 147. https://doi.org/10.1016/j.apsoil.2019.103438
Zhang, Y., Gao, X., Hao, X., Alexander, T. W., Shi, X., Jin, L., & Thomas, B. W. (2020). Heavy grazing over 64 years reduced soil bacterial diversity in the foothills of the Rocky Mountains Canada. Applied Soil Ecology, 147. https://doi.org/10.1016/j.apsoil.2019.09.011
Zhao, Y., Peth, S., Krummelbein, J., Horn, R., Wang, Z., Steffens, M., Hoffmann, C., & Peng, X. (2007). Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modelling, 205(1–2), 241–254. https://doi.org/10.1016/j.ecolmodel.2007.02.019
doi: 10.1016/j.ecolmodel.2007.02.019
Zhao, Y., Peth, S., Hallett, P., Wang, X., Giese, M., & Gao, Y. (2011). Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics. Ecohydrology, 4(1), 36–48. https://doi.org/10.1002/eco.121
doi: 10.1002/eco.121
Zuazo, V. H. D., & Pleguezuelo, C. R. R. (2008). Soil erosion and runoff prevention by plant covers A Review. Agronomy for Sustainable Development, 28(1), 65–86. https://doi.org/10.1051/agro:2007062
doi: 10.1051/agro:2007062