Diffuse midline gliomas, H3 K27M-mutant are associated with less peritumoral edema and contrast enhancement in comparison to glioblastomas, H3 K27M-wildtype of midline structures.
Adolescent
Adult
Aged
Brain Neoplasms
/ classification
Brain Stem Neoplasms
/ classification
Child
Child, Preschool
Female
Glioblastoma
/ classification
Glioma
/ classification
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Neuroimaging
Retrospective Studies
Spinal Cord Neoplasms
/ classification
Thalamus
/ diagnostic imaging
Young Adult
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2021
2021
Historique:
received:
04
11
2020
accepted:
23
03
2021
entrez:
4
8
2021
pubmed:
5
8
2021
medline:
23
11
2021
Statut:
epublish
Résumé
The entity 'diffuse midline glioma, H3 K27M-mutant (DMG)' was introduced in the revised 4th edition of the 2016 WHO classification of brain tumors. However, there are only a few reports on magnetic resonance imaging (MRI) of these tumors. Thus, we conducted a retrospective survey focused on MRI features of DMG compared to midline glioblastomas H3 K27M-wildtype (mGBM-H3wt). We identified 24 DMG cases and 19 mGBM-H3wt patients as controls. After being retrospectively evaluated for microscopic evidence of microvascular proliferations (MVP) and tumor necrosis by two experienced neuropathologists to identify the defining histological criteria of mGBM-H3wt, the samples were further analyzed by two experienced readers regarding imaging features such as shape, peritumoral edema and contrast enhancement. The DMG were found in the thalamus in 37.5% of cases (controls 63%), in the brainstem in 50% (vs. 32%) and spinal cord in 12.5% (vs. 5%). In MRI and considering MVP, DMG were found to be by far less likely to develop peritumoral edema (OR: 0.13; 95%-CL: 0.02-0.62) (p = 0.010). They, similarly, were associated with a significantly lower probability of developing strong contrast enhancement compared to mGBM-H3wt (OR: 0.10; 95%-CL: 0.02-0.47) (P = 0.003). Despite having highly variable imaging features, DMG exhibited markedly less edema and lower contrast enhancement in MRI compared to mGBM-H3wt. Of these features, the enhancement level was associated with evidence of MVP.
Identifiants
pubmed: 34347774
doi: 10.1371/journal.pone.0249647
pii: PONE-D-20-34358
pmc: PMC8336828
doi:
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0249647Déclaration de conflit d'intérêts
The authors declare that no competing interests exist.
Références
Acta Neuropathol Commun. 2020 Apr 23;8(1):57
pubmed: 32326973
AJNR Am J Neuroradiol. 2000 Oct;21(9):1603-10
pubmed: 11039338
J Neurooncol. 2019 May;143(1):87-93
pubmed: 30864101
Acta Neurochir (Wien). 2018 Nov;160(11):2237-2248
pubmed: 30203362
Neuropathol Appl Neurobiol. 2017 Apr;43(3):271-276
pubmed: 27219822
World Neurosurg. 2019 Aug;128:527-531
pubmed: 31048046
Expert Rev Anticancer Ther. 2013 Nov;13(11):1319-25
pubmed: 24152171
J Neurooncol. 2019 Apr;142(2):299-307
pubmed: 30661193
J Neuropathol Exp Neurol. 2018 Apr 1;77(4):302-311
pubmed: 29444279
J Neurooncol. 2017 Mar;132(1):1-11
pubmed: 28064387
Genes Dev. 2013 May 1;27(9):985-90
pubmed: 23603901
Nat Genet. 2014 Jul;46(7):726-30
pubmed: 24880341
Clin Neuropathol. 2018 Mar/Apr;37 (2018)(2):53-63
pubmed: 29393845
Neuro Oncol. 2014 Jan;16(1):140-6
pubmed: 24285547
J Neurooncol. 2018 Oct;140(1):107-113
pubmed: 29959694
Int J Radiat Oncol Biol Phys. 1999 Mar 15;43(5):947-9
pubmed: 10192338
Acta Neuropathol Commun. 2016 Aug 12;4(1):84
pubmed: 27519587
Science. 2013 May 17;340(6134):857-61
pubmed: 23539183
Acta Neuropathol. 2016 Oct;132(4):635-7
pubmed: 27539613
Acta Neuropathol Commun. 2017 Dec 15;5(1):98
pubmed: 29246238
J Biomed Biotechnol. 2011;2011:732848
pubmed: 21541193
Eur J Cancer. 2013 Dec;49(18):3856-62
pubmed: 24011536
J Clin Neurosci. 2017 Oct;44:254-259
pubmed: 28711290
Neuroimaging Clin N Am. 2010 Aug;20(3):337-53
pubmed: 20708550
Int J Radiat Oncol Biol Phys. 1997 Jul 15;38(5):925-9
pubmed: 9276356
Brain Pathol. 2017 Nov;27(6):846-850
pubmed: 28378357
Nature. 2018 Mar 22;555(7697):469-474
pubmed: 29539639
AJNR Am J Neuroradiol. 2019 Mar;40(3):426-432
pubmed: 30705071
Eur J Cancer. 2019 Jan;107:15-27
pubmed: 30529899
AJNR Am J Neuroradiol. 2016 Dec;37(12):2217-2223
pubmed: 27585700
Acta Neuropathol. 2014 Oct;128(4):573-81
pubmed: 25047029
Acta Neuropathol. 2020 Oct;140(4):569-581
pubmed: 32776277
Acta Neuropathol. 2017 Sep;134(3):507-516
pubmed: 28401334
Clin Neuropathol. 2021 Mar-Apr;40(2):108-117
pubmed: 33191898
Acta Neuropathol. 2015 May;129(5):669-78
pubmed: 25752754
Eur J Radiol. 2019 May;114:152-159
pubmed: 31005167
Invest Radiol. 1999 Jun;34(6):427-34
pubmed: 10353036
Acta Neuropathol. 2018 Apr;135(4):639-642
pubmed: 29497819
Neuro Oncol. 2011 Apr;13(4):410-6
pubmed: 21345842
Cancer Cell. 2013 Nov 11;24(5):660-72
pubmed: 24183680
Pediatr Blood Cancer. 2018 Jan;65(1):
pubmed: 28792659
J Neurol Sci. 2015;353(1-2):92-7
pubmed: 25934342
Brain Pathol. 2016 Sep;26(5):569-80
pubmed: 26517431
AJNR Am J Neuroradiol. 2017 Apr;38(4):795-800
pubmed: 28183840
Pediatr Neurosurg. 2018;53(1):59-63
pubmed: 29131126
Neuro Oncol. 2017 Aug 1;19(8):1127-1134
pubmed: 28201752
Science. 2014 Aug 29;345(6200):1065-70
pubmed: 25170156
Pediatr Blood Cancer. 2016 Apr;63(4):716-8
pubmed: 26544789