Compressed-sensing accelerated magnetic resonance imaging of inner ear.
MRI
balanced fast field echo imaging
compressed sensing
inner ear
Journal
Journal of applied clinical medical physics
ISSN: 1526-9914
Titre abrégé: J Appl Clin Med Phys
Pays: United States
ID NLM: 101089176
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
revised:
09
07
2021
received:
06
03
2021
accepted:
21
07
2021
pubmed:
5
8
2021
medline:
11
9
2021
entrez:
4
8
2021
Statut:
ppublish
Résumé
To compare conventional method and compressed-sensing (CS) accelerated 3D balanced fast field echo imaging (bFFE) of inner ear. Twenty patients with suspected inner ear disease underwent CS accelerated 3D-bFFE (CS-bFFE) and conventional 3D-bFFE (Con-bFFE) by a 3T MRI. The overall image quality, motion artifacts, and image quality of specific structures of inner ear were assessed on ordinal scales by three radiologists who were blinded to the scan protocols. Kendall W test was used to evaluate interobserver agreement and Wilcoxon test was performed to compare the image quality and motion artifacts between CS-bFFE and Con-bFFE. The acquisition duration of CS-bFFE (1 min 53 s) was 49% faster than Con-bFFE. Three radiologists had good inter-observer agreement of image quality (Kendall W value of 0.829 for CS-bFFE and 0.815 for Con-bFFE) and motion artifacts evaluation (Kendall W value of 0861 for CS-bFFE and 0.707 for Con-bFFE). The better overall image quality of CS-bFFE was assessed (4.93 ± 0.23 for CS-bFFE, 4.53 ± 0.70 for Con-bFFE, Z = -2.254, p = 0.024). The image quality score of facial and cochlear nerve gained higher in CS-bFFE (4.93 ± 0.23 for CS-bFFE, 4.58 ± 0.64 for Con-bFFE, Z = -2.094, p = 0.036). No significant difference of motion artifacts (p = 0.050) between CS-bFFE and Con-bFFE. The CS-bFFE improves image quality and reduces acquisition time significantly, and it is a feasible MRI protocol for inner ear imaging.
Identifiants
pubmed: 34347931
doi: 10.1002/acm2.13383
pmc: PMC8425888
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
332-338Informations de copyright
© 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Références
Br J Radiol. 2000 Mar;73(867):242-7
pubmed: 10817038
Crit Rev Biomed Eng. 2013;41(3):183-204
pubmed: 24579643
AJNR Am J Neuroradiol. 2019 Jan;40(1):92-98
pubmed: 30523142
Magn Reson Med. 1999 Nov;42(5):952-62
pubmed: 10542355
AJNR Am J Neuroradiol. 2018 Mar;39(3):454-458
pubmed: 29348137
AJNR Am J Neuroradiol. 2014 Dec;35(12):2366-70
pubmed: 25034778
J Magn Reson Imaging. 2017 Apr;45(4):966-987
pubmed: 27981664
J Magn Reson Imaging. 2000 Dec;12(6):814-25
pubmed: 11105019
Br J Radiol. 2015;88(1056):20150487
pubmed: 26402216
Invest Radiol. 2018 Mar;53(3):150-157
pubmed: 28976478
J Magn Reson Imaging. 2019 Dec;50(6):1843-1851
pubmed: 30980468
J Appl Clin Med Phys. 2021 Sep;22(9):332-338
pubmed: 34347931
Health Technol Assess. 2009 Mar;13(18):iii-iv, ix-xi, 1-154
pubmed: 19358774
Clin Neuroradiol. 2015 Oct;25 Suppl 2:197-203
pubmed: 26153464
Eur Radiol. 2004 Feb;14(2):239-42
pubmed: 14531013
AJNR Am J Neuroradiol. 2004 Apr;25(4):618-22
pubmed: 15090354
Magn Reson Med. 2009 Dec;62(6):1574-84
pubmed: 19785017
Magn Reson Med. 2007 Dec;58(6):1182-95
pubmed: 17969013
Invest Radiol. 2018 Dec;53(12):742-747
pubmed: 30020139
Skeletal Radiol. 2017 Jan;46(1):7-15
pubmed: 27744578
J Comput Assist Tomogr. 2007 Jul-Aug;31(4):588-91
pubmed: 17882037
Invest Radiol. 2018 Nov;53(11):681-688
pubmed: 29889672
Magn Reson Imaging. 1999 Feb;17(2):171-82
pubmed: 10215471
Invest Radiol. 2016 Apr;51(4):228-35
pubmed: 26606551
Invest Radiol. 2013 Sep;48(9):638-45
pubmed: 23538890
AJNR Am J Neuroradiol. 2018 Oct;39(10):1833-1838
pubmed: 30213812
Korean J Audiol. 2013 Dec;17(3):111-7
pubmed: 24653918
Korean J Radiol. 2008 May-Jun;9(3):212-8
pubmed: 18525223
Magn Reson Imaging. 2017 Nov;43:129-135
pubmed: 28734956