Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures.

chemical reaction networks hydrogels life-like systems pH feedback system supramolecular chemistry

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
04 10 2021
Historique:
received: 21 07 2021
pubmed: 5 8 2021
medline: 5 8 2021
entrez: 4 8 2021
Statut: ppublish

Résumé

Compartmentalized reaction networks regulating signal processing, communication and pattern formation are central to living systems. Towards achieving life-like materials, we compartmentalized urea-urease and more complex urea-urease/ester-esterase pH-feedback reaction networks into hydrogel spheres and investigate how fuel-driven pH fronts can be sent out from these spheres and regulated by internal reaction networks. Membrane characteristics are installed by covering urease spheres with responsive hydrogel shells. We then encapsulate the two networks (urea-urease and ester-esterase) separately into different hydrogel spheres to devise communication, pattern formation and attraction. Moreover, these pH fronts and patterns can be used for self-growing hydrogels, and for developing complex geometries from non-injectable hydrogels without 3D printing tools. This study opens possibilities for compartmentalized feedback reactions and their use in next generation materials fabrication.

Identifiants

pubmed: 34347941
doi: 10.1002/anie.202109735
pmc: PMC8518392
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

22537-22546

Informations de copyright

© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Références

J R Soc Interface. 2017 Mar;15(140):
pubmed: 29514986
Angew Chem Int Ed Engl. 2021 May 10;60(20):11398-11405
pubmed: 33682231
Nat Nanotechnol. 2017 May;12(4):351-359
pubmed: 28135261
Biophys J. 2012 Aug 8;103(3):610-615
pubmed: 22947878
Nat Commun. 2016 Feb 09;7:10598
pubmed: 26856370
Angew Chem Int Ed Engl. 2021 Feb 23;60(9):4512-4517
pubmed: 33006406
Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22537-22546
pubmed: 34347941
Nat Chem. 2014 Apr;6(4):295-302
pubmed: 24651195
Nat Chem. 2016 Mar;8(3):264-9
pubmed: 26892559
Chem Mater. 2020 Jun 23;32(12):5264-5271
pubmed: 32595268
Nat Chem. 2017 Oct;9(10):990-996
pubmed: 28937677
Nat Commun. 2020 Jul 28;11(1):3760
pubmed: 32724077
Angew Chem Int Ed Engl. 2016 Feb 5;55(6):2127-31
pubmed: 26732469
Angew Chem Int Ed Engl. 2015 Nov 2;54(45):13258-62
pubmed: 26249239
Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14549-54
pubmed: 12949263
Angew Chem Weinheim Bergstr Ger. 2016 Feb 5;128(6):2167-2171
pubmed: 27478280
J Am Chem Soc. 2013 Nov 13;135(45):16789-92
pubmed: 24147566
Nature. 2019 Aug;572(7768):205-210
pubmed: 31341284
Life (Basel). 2019 Jun 03;9(2):
pubmed: 31163645
Science. 2017 Dec 15;358(6369):
pubmed: 29242317
Macromol Rapid Commun. 2019 Aug;40(15):e1900251
pubmed: 31162773
J Am Chem Soc. 2019 May 22;141(20):8289-8295
pubmed: 31035761
Chem Sci. 2019 Sep 18;10(41):9446-9453
pubmed: 32055320
Nature. 2000 Jul 27;406(6794):389-91
pubmed: 10935631
Life (Basel). 2019 Jul 29;9(3):
pubmed: 31362385
Nat Commun. 2017 Jul 05;8:15317
pubmed: 28580948
Chem Commun (Camb). 2014 Oct 4;50(76):11107-9
pubmed: 25111059
Nat Chem. 2011 Feb;3(2):103-13
pubmed: 21258382
Nat Chem. 2019 Sep;11(9):829-838
pubmed: 31427767
Nat Nanotechnol. 2019 Apr;14(4):369-378
pubmed: 30833694
Nat Commun. 2017 Oct 24;8(1):1117
pubmed: 29061965
Nano Lett. 2017 Aug 9;17(8):4989-4995
pubmed: 28656771
Angew Chem Int Ed Engl. 2021 Feb 15;60(7):3619-3624
pubmed: 33098236
J Phys Chem B. 2010 Nov 11;114(44):14059-63
pubmed: 20954690
Commun Chem. 2021 Jun 29;4(1):101
pubmed: 36697546
J Am Chem Soc. 2018 Apr 25;140(16):5356-5359
pubmed: 29617118
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11349-11353
pubmed: 29999232
J Phys Chem B. 2014 Jun 12;118(23):6092-7
pubmed: 24830687
Nat Commun. 2019 Oct 11;10(1):4636
pubmed: 31604941
Nat Rev Mol Cell Biol. 2001 May;2(5):392-6
pubmed: 11331914
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12629-33
pubmed: 25196078
Nat Chem. 2015 Feb;7(2):160-5
pubmed: 25615670
Adv Mater. 2017 May;29(17):
pubmed: 28221714
Angew Chem Int Ed Engl. 2020 Sep 21;59(39):16918-16925
pubmed: 32533754
Nat Nanotechnol. 2019 Dec;14(12):1129-1134
pubmed: 31740796
J Mater Chem B. 2017 Nov 28;5(44):8681-8685
pubmed: 32264261
Nat Rev Neurosci. 2007 Jun;8(6):451-65
pubmed: 17514198
Chem Sci. 2017 May 1;8(5):4100-4107
pubmed: 28580123
Nat Mater. 2008 Oct;7(10):769-70
pubmed: 18813301
Nat Commun. 2020 Mar 23;11(1):1524
pubmed: 32251282
J Phys Chem Lett. 2015 Jan 2;6(1):60-5
pubmed: 26263092
J Phys Chem B. 2013 May 30;117(21):6566-73
pubmed: 23659692
Chemphyschem. 2017 Jul 5;18(13):1842-1850
pubmed: 28112462
Chem Sci. 2021 Feb 8;12(11):4162-4172
pubmed: 34163689
Angew Chem Int Ed Engl. 2020 Aug 17;59(34):14558-14563
pubmed: 32463972
Chem Soc Rev. 2017 Sep 18;46(18):5588-5619
pubmed: 28134366

Auteurs

Indrajit Maity (I)

A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.

Charu Sharma (C)

A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.

Francisco Lossada (F)

A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.

Andreas Walther (A)

A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.

Classifications MeSH