Unique chemical parameters and microbial activity lead to increased archaeological preservation at the Roman frontier site of Vindolanda, UK.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 08 2021
Historique:
received: 15 02 2021
accepted: 16 07 2021
entrez: 5 8 2021
pubmed: 6 8 2021
medline: 9 11 2021
Statut: epublish

Résumé

Waterlogged burial conditions impact upon artefact preservation. One major determinant of preservation is presence and behaviour of microorganisms, however, unravelling the mechanisms, especially in waterlogged conditions is challenging. In this study, we analysed elemental composition, bacterial diversity and community structure from excavation trenches at the Roman Site of Vindolanda, Northumberland, UK, using pXRF and 16S rRNA gene amplicon sequencing. Excavation trenches provide information of different occupation periods. The results indicated that microbial communities were dominated by Firmicutes, Bacteroidetes and Proteobacteria at a phylum level. Samples which also had visible vivianite presence showed that there were marked increases in Methylophilus. Methylophilus might be associated with favourable preservation in these anaerobic conditions. More research is needed to clearly link the presence of Methylophilus with vivianite production. The study emphasises the need for further integration of chemical and microbiome approaches, especially in good preservation areas, to explore microbial and chemical degradation mechanisms.

Identifiants

pubmed: 34349140
doi: 10.1038/s41598-021-94853-7
pii: 10.1038/s41598-021-94853-7
pmc: PMC8338975
doi:

Substances chimiques

RNA, Ribosomal, 16S 0
Phosphorus 27YLU75U4W
Sulfur 70FD1KFU70
Iron E1UOL152H7

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15837

Informations de copyright

© 2021. The Author(s).

Références

Birley, R. Vindolanda: Extraordinary Records of Daily Life on the Northern Frontier (Roman Army Museum Publications, 2015).
Birley, R. Vindolanda: A Roman Frontier Post on Hadrian’s Wall (Thames and Hudson, 1977).
Bowman, A. K., Thomas, J. D. & Tomlin, R. S. O. The vindolanda writing-tablets (Tabulae vindolandenses IV, part 3): New letters of iulius verecundus. Britannia 50, 225–251 (2019).
doi: 10.1017/S0068113X19000321
Taylor, G., Hefford, R. J. W., Birley, A. & Huntley, J. P. Identifying the “blue substance” at the Roman site of Vindolanda, Northumberland. J. Archaeol. Sci. Rep. 24, 582–587 (2019).
Holden, J. et al. Hydrological controls of in situ preservation of waterlogged archaeological deposits. Earth Sci. Rev. 78(1–2), 59–83 (2006).
doi: 10.1016/j.earscirev.2006.03.006
Huisman, H. & van Os, B. Relax, don’t do it: A future for archaeological monitoring. Conserv. Manag. Archaeol. Sites 18(1–3), 372–386 (2016).
doi: 10.1080/13505033.2016.1182776
McGowan, G. & Prangnell, J. The significance of vivianite in archaeological settings. Geoarchaeology 21(1), 93–111 (2006).
doi: 10.1002/gea.20090
Sánchez-Román, M., Puente-Sánchez, F., Parro, V. & Amils, R. Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances. Front. Microbiol. 6, 1024 (2015).
pubmed: 26441946 pmcid: 4585095 doi: 10.3389/fmicb.2015.01024
Miot, J. et al. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3), 373–384 (2009).
pubmed: 19573166 doi: 10.1111/j.1472-4669.2009.00203.x
Volkland, H. P. et al. Bacterial phosphating of mild (unalloyed) steel. Appl. Environ. Microbiol. 66(10), 4389–4395 (2000).
pubmed: 11010888 pmcid: 92314 doi: 10.1128/AEM.66.10.4389-4395.2000
Blanchette, R. A., Nilsson, T., Daniel, G. & Abad, A. Biological Degradation of Wood 141–174 (American Chemical Society, 1990).
Björdal, C. G., Nilsson, T. & Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden. Applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 43(1–2), 63–73 (1999).
doi: 10.1016/S0964-8305(98)00070-5
Björdal, C. G. Microbial degradation of waterlogged archaeological wood. J. Cult. Herit. 13(3 Suppl.), S118–S122 (2012).
doi: 10.1016/j.culher.2012.02.003
Jessen, G. L. et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 3(2), e1601897 (2017).
pubmed: 28246637 pmcid: 5302875 doi: 10.1126/sciadv.1601897
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60 (2011).
pubmed: 21702898 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Tiedje, J. M., Sexstone, A. J., Parkin, T. B. & Revsbech, N. P. Anaerobic processes in soil. Plant Soil 76(1–3), 197–212 (1984).
doi: 10.1007/BF02205580
Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8(1), 1771 (2017).
pubmed: 29176641 pmcid: 5701132 doi: 10.1038/s41467-017-01406-6
Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob. Change Biol. 19(9), 2804–2813 (2013).
doi: 10.1111/gcb.12229
Forsmann, D. M. & Kjaergaard, C. Phosphorus release from anaerobic peat soils during convective discharge—Effect of soil Fe:P molar ratio and preferential flow. Geoderma 223–225(1), 21–32 (2014).
doi: 10.1016/j.geoderma.2014.01.025
Lehtoranta, J., Ekholm, P., Wahlström, S., Tallberg, P. & Uusitalo, R. Labile organic carbon regulates phosphorus release from eroded soil transported into anaerobic coastal systems. Ambio 44(2), 263–273 (2015).
pmcid: 4329150 doi: 10.1007/s13280-014-0620-x
Rothe, M., Kleeberg, A. & Hupfer, M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci. Rev. 158, 51–64 (2016).
doi: 10.1016/j.earscirev.2016.04.008
Kibblewhite, M., Tóth, G. & Hermann, T. Predicting the preservation of cultural artefacts and buried materials in soil. Sci. Total Environ. 529, 249–263 (2015).
pubmed: 26022409 doi: 10.1016/j.scitotenv.2015.04.036
Xu, J., Wei, Y., Jia, H., Xiao, L. & Gong, D. A new perspective on studying burial environment before archaeological excavation: Analyzing bacterial community distribution by high-throughput sequencing. Sci. Rep. 7, 41691 (2017).
pubmed: 28169321 pmcid: 5294632 doi: 10.1038/srep41691
Douterelo, I., Goulder, R. & Lillie, M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Appl. Soil Ecol. 44(3), 219–227 (2010).
doi: 10.1016/j.apsoil.2009.12.009
Wang, C. et al. Metagenomic analysis of microbial consortia enriched from compost: New insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9(1), 22 (2016).
pubmed: 26834834 pmcid: 4731972 doi: 10.1186/s13068-016-0440-2
Pankratov, T. A., Dedysh, S. N. & Zavarzin, G. A. The leading role of actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Dokl. Biol. Sci. 410(1), 428–430 (2006).
pubmed: 17278855 doi: 10.1134/S0012496606050243
Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).
pubmed: 27303369 pmcid: 4885859 doi: 10.3389/fmicb.2016.00744
Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum acidobacteria. Appl. Environ. Microbiol. 77(2), 586–596 (2011).
pubmed: 21097594 doi: 10.1128/AEM.01080-10
Yang, S. & Song, L. Succession of bacterial community structure and metabolic function during solid waste decomposition. Bioresour. Technol. 291, 121865 (2019).
pubmed: 31369926 doi: 10.1016/j.biortech.2019.121865
Siles, J. A., Öhlinger, B., Cajthaml, T., Kistler, E. & Margesin, R. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy). Sci. Rep. 8(1), 1903 (2018).
pubmed: 29382933 pmcid: 5789874 doi: 10.1038/s41598-018-20347-8
Sun, W. et al. Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci. Total Environ. 550, 297–308 (2016).
pubmed: 26820933 doi: 10.1016/j.scitotenv.2016.01.090
Haaijer, S. C. M. et al. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. ISME J. 2(12), 1231–1242 (2008).
pubmed: 18754044 doi: 10.1038/ismej.2008.75
Li, X. et al. Metagenome-assembled genome sequence of Sulfuricurvum sp. strain IAE1, isolated from a 4-chlorophenol-degrading consortium. Microbiol. Resour. Announc. 8(31), e00296-19 (2019).
pubmed: 31371533 pmcid: 6675981 doi: 10.1128/MRA.00296-19
Hubert, C. R. J. et al. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ. Microbiol. 14(2), 387–404 (2012).
pubmed: 21824242 pmcid: 3490369 doi: 10.1111/j.1462-2920.2011.02521.x
Madhaiyan, M., Poonguzhali, S., Kwon, S. W. & Sa, T. M. Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 59(11), 2904–2908 (2009).
pubmed: 19628595 doi: 10.1099/ijs.0.009811-0
Doronina, N., Kaparullina, E. & Trotsenko, Y. The Family Methylophilaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 869–880 (Springer, 2014).
doi: 10.1007/978-3-642-30197-1_243
Yang, Y. et al. Extracellular electron transfer of Methylophilus methylotrophs. Process Biochem. 94, 313–318 (2020).
doi: 10.1016/j.procbio.2020.05.001
Veeramani, H. et al. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochim. Cosmochim. Acta 75(9), 2512–2528 (2011).
doi: 10.1016/j.gca.2011.02.024
Volpato, J. Relation Between Geochemistry and Minerals (Magnetite, Hematite, Pyrite and Vivianite) in Contaminated Estuarine Sediments, Santos, Sao Paulo (Universidade Estadual de Campinas, 2015).
Wu, D. et al. Zone of metal-driven anaerobic oxidation of methane is an important sink for phosphorus in the Taixinan Basin, South China Sea. Mar. Geol. 427, 1–10 (2020).
doi: 10.1016/j.margeo.2020.106268
Elghali, A. et al. Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement. Sci. Total Environ. 784, 147105 (2021).
pubmed: 33905938 doi: 10.1016/j.scitotenv.2021.147105
Williams, R., Taylor, G. & Orr, C. pXRF method development for elemental analysis of archaeological soil. Archaeometry 62(6), 1145–1163 (2020).
doi: 10.1111/arcm.12583
Kozich, J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79(17), 5112–5120 (2013).
pubmed: 23793624 pmcid: 3753973 doi: 10.1128/AEM.01043-13
R: A Language and Environment for Statistical Computing [Computer Program] (R Foundation for Statistical Computing, 2020).
Signorell, A. DescTools: Tools for descriptive statistics (2016).
Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR) (2015).
Fox, J. & Weisberg, S. An {R} companion to applied regression (2011).
Wickham, H. ggplot2: Elegant graphics for data analysis (2016).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686 (2019).
doi: 10.21105/joss.01686
Wickham, H., Hester, J. & Francois, R. readr: Read rectangular Text Data. R package version 1.3.1 (2018). https://cran.r-project.org/web/packages/ggplot2/citation.html .
Warnes, G. R., Bolker, B., Bonebakker, L. et al. Gplots:Various R Programming Tools for Plotting Data. R package 3.03 (2020). https://cran.r-project.org/package=gplots .

Auteurs

C H Orr (CH)

School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, UK.

R Williams (R)

School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, UK.

H H Halldórsdóttir (HH)

School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, UK.

A Birley (A)

Vindolanda, Bardon Mill, Hexham, NE47 7JN, Northumberland, UK.

E Greene (E)

Faculty of Arts and Humanities, Classics Department, University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B8, Canada.

A Nelson (A)

Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK.

T K Ralebitso-Senior (TK)

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, LS3 3AF, UK.

G Taylor (G)

School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, UK. g.taylor@tees.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH