Unique chemical parameters and microbial activity lead to increased archaeological preservation at the Roman frontier site of Vindolanda, UK.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 08 2021
04 08 2021
Historique:
received:
15
02
2021
accepted:
16
07
2021
entrez:
5
8
2021
pubmed:
6
8
2021
medline:
9
11
2021
Statut:
epublish
Résumé
Waterlogged burial conditions impact upon artefact preservation. One major determinant of preservation is presence and behaviour of microorganisms, however, unravelling the mechanisms, especially in waterlogged conditions is challenging. In this study, we analysed elemental composition, bacterial diversity and community structure from excavation trenches at the Roman Site of Vindolanda, Northumberland, UK, using pXRF and 16S rRNA gene amplicon sequencing. Excavation trenches provide information of different occupation periods. The results indicated that microbial communities were dominated by Firmicutes, Bacteroidetes and Proteobacteria at a phylum level. Samples which also had visible vivianite presence showed that there were marked increases in Methylophilus. Methylophilus might be associated with favourable preservation in these anaerobic conditions. More research is needed to clearly link the presence of Methylophilus with vivianite production. The study emphasises the need for further integration of chemical and microbiome approaches, especially in good preservation areas, to explore microbial and chemical degradation mechanisms.
Identifiants
pubmed: 34349140
doi: 10.1038/s41598-021-94853-7
pii: 10.1038/s41598-021-94853-7
pmc: PMC8338975
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Phosphorus
27YLU75U4W
Sulfur
70FD1KFU70
Iron
E1UOL152H7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15837Informations de copyright
© 2021. The Author(s).
Références
Birley, R. Vindolanda: Extraordinary Records of Daily Life on the Northern Frontier (Roman Army Museum Publications, 2015).
Birley, R. Vindolanda: A Roman Frontier Post on Hadrian’s Wall (Thames and Hudson, 1977).
Bowman, A. K., Thomas, J. D. & Tomlin, R. S. O. The vindolanda writing-tablets (Tabulae vindolandenses IV, part 3): New letters of iulius verecundus. Britannia 50, 225–251 (2019).
doi: 10.1017/S0068113X19000321
Taylor, G., Hefford, R. J. W., Birley, A. & Huntley, J. P. Identifying the “blue substance” at the Roman site of Vindolanda, Northumberland. J. Archaeol. Sci. Rep. 24, 582–587 (2019).
Holden, J. et al. Hydrological controls of in situ preservation of waterlogged archaeological deposits. Earth Sci. Rev. 78(1–2), 59–83 (2006).
doi: 10.1016/j.earscirev.2006.03.006
Huisman, H. & van Os, B. Relax, don’t do it: A future for archaeological monitoring. Conserv. Manag. Archaeol. Sites 18(1–3), 372–386 (2016).
doi: 10.1080/13505033.2016.1182776
McGowan, G. & Prangnell, J. The significance of vivianite in archaeological settings. Geoarchaeology 21(1), 93–111 (2006).
doi: 10.1002/gea.20090
Sánchez-Román, M., Puente-Sánchez, F., Parro, V. & Amils, R. Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances. Front. Microbiol. 6, 1024 (2015).
pubmed: 26441946
pmcid: 4585095
doi: 10.3389/fmicb.2015.01024
Miot, J. et al. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3), 373–384 (2009).
pubmed: 19573166
doi: 10.1111/j.1472-4669.2009.00203.x
Volkland, H. P. et al. Bacterial phosphating of mild (unalloyed) steel. Appl. Environ. Microbiol. 66(10), 4389–4395 (2000).
pubmed: 11010888
pmcid: 92314
doi: 10.1128/AEM.66.10.4389-4395.2000
Blanchette, R. A., Nilsson, T., Daniel, G. & Abad, A. Biological Degradation of Wood 141–174 (American Chemical Society, 1990).
Björdal, C. G., Nilsson, T. & Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden. Applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 43(1–2), 63–73 (1999).
doi: 10.1016/S0964-8305(98)00070-5
Björdal, C. G. Microbial degradation of waterlogged archaeological wood. J. Cult. Herit. 13(3 Suppl.), S118–S122 (2012).
doi: 10.1016/j.culher.2012.02.003
Jessen, G. L. et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 3(2), e1601897 (2017).
pubmed: 28246637
pmcid: 5302875
doi: 10.1126/sciadv.1601897
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60 (2011).
pubmed: 21702898
pmcid: 3218848
doi: 10.1186/gb-2011-12-6-r60
Tiedje, J. M., Sexstone, A. J., Parkin, T. B. & Revsbech, N. P. Anaerobic processes in soil. Plant Soil 76(1–3), 197–212 (1984).
doi: 10.1007/BF02205580
Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8(1), 1771 (2017).
pubmed: 29176641
pmcid: 5701132
doi: 10.1038/s41467-017-01406-6
Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob. Change Biol. 19(9), 2804–2813 (2013).
doi: 10.1111/gcb.12229
Forsmann, D. M. & Kjaergaard, C. Phosphorus release from anaerobic peat soils during convective discharge—Effect of soil Fe:P molar ratio and preferential flow. Geoderma 223–225(1), 21–32 (2014).
doi: 10.1016/j.geoderma.2014.01.025
Lehtoranta, J., Ekholm, P., Wahlström, S., Tallberg, P. & Uusitalo, R. Labile organic carbon regulates phosphorus release from eroded soil transported into anaerobic coastal systems. Ambio 44(2), 263–273 (2015).
pmcid: 4329150
doi: 10.1007/s13280-014-0620-x
Rothe, M., Kleeberg, A. & Hupfer, M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci. Rev. 158, 51–64 (2016).
doi: 10.1016/j.earscirev.2016.04.008
Kibblewhite, M., Tóth, G. & Hermann, T. Predicting the preservation of cultural artefacts and buried materials in soil. Sci. Total Environ. 529, 249–263 (2015).
pubmed: 26022409
doi: 10.1016/j.scitotenv.2015.04.036
Xu, J., Wei, Y., Jia, H., Xiao, L. & Gong, D. A new perspective on studying burial environment before archaeological excavation: Analyzing bacterial community distribution by high-throughput sequencing. Sci. Rep. 7, 41691 (2017).
pubmed: 28169321
pmcid: 5294632
doi: 10.1038/srep41691
Douterelo, I., Goulder, R. & Lillie, M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Appl. Soil Ecol. 44(3), 219–227 (2010).
doi: 10.1016/j.apsoil.2009.12.009
Wang, C. et al. Metagenomic analysis of microbial consortia enriched from compost: New insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9(1), 22 (2016).
pubmed: 26834834
pmcid: 4731972
doi: 10.1186/s13068-016-0440-2
Pankratov, T. A., Dedysh, S. N. & Zavarzin, G. A. The leading role of actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Dokl. Biol. Sci. 410(1), 428–430 (2006).
pubmed: 17278855
doi: 10.1134/S0012496606050243
Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).
pubmed: 27303369
pmcid: 4885859
doi: 10.3389/fmicb.2016.00744
Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum acidobacteria. Appl. Environ. Microbiol. 77(2), 586–596 (2011).
pubmed: 21097594
doi: 10.1128/AEM.01080-10
Yang, S. & Song, L. Succession of bacterial community structure and metabolic function during solid waste decomposition. Bioresour. Technol. 291, 121865 (2019).
pubmed: 31369926
doi: 10.1016/j.biortech.2019.121865
Siles, J. A., Öhlinger, B., Cajthaml, T., Kistler, E. & Margesin, R. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy). Sci. Rep. 8(1), 1903 (2018).
pubmed: 29382933
pmcid: 5789874
doi: 10.1038/s41598-018-20347-8
Sun, W. et al. Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci. Total Environ. 550, 297–308 (2016).
pubmed: 26820933
doi: 10.1016/j.scitotenv.2016.01.090
Haaijer, S. C. M. et al. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. ISME J. 2(12), 1231–1242 (2008).
pubmed: 18754044
doi: 10.1038/ismej.2008.75
Li, X. et al. Metagenome-assembled genome sequence of Sulfuricurvum sp. strain IAE1, isolated from a 4-chlorophenol-degrading consortium. Microbiol. Resour. Announc. 8(31), e00296-19 (2019).
pubmed: 31371533
pmcid: 6675981
doi: 10.1128/MRA.00296-19
Hubert, C. R. J. et al. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ. Microbiol. 14(2), 387–404 (2012).
pubmed: 21824242
pmcid: 3490369
doi: 10.1111/j.1462-2920.2011.02521.x
Madhaiyan, M., Poonguzhali, S., Kwon, S. W. & Sa, T. M. Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 59(11), 2904–2908 (2009).
pubmed: 19628595
doi: 10.1099/ijs.0.009811-0
Doronina, N., Kaparullina, E. & Trotsenko, Y. The Family Methylophilaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 869–880 (Springer, 2014).
doi: 10.1007/978-3-642-30197-1_243
Yang, Y. et al. Extracellular electron transfer of Methylophilus methylotrophs. Process Biochem. 94, 313–318 (2020).
doi: 10.1016/j.procbio.2020.05.001
Veeramani, H. et al. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochim. Cosmochim. Acta 75(9), 2512–2528 (2011).
doi: 10.1016/j.gca.2011.02.024
Volpato, J. Relation Between Geochemistry and Minerals (Magnetite, Hematite, Pyrite and Vivianite) in Contaminated Estuarine Sediments, Santos, Sao Paulo (Universidade Estadual de Campinas, 2015).
Wu, D. et al. Zone of metal-driven anaerobic oxidation of methane is an important sink for phosphorus in the Taixinan Basin, South China Sea. Mar. Geol. 427, 1–10 (2020).
doi: 10.1016/j.margeo.2020.106268
Elghali, A. et al. Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement. Sci. Total Environ. 784, 147105 (2021).
pubmed: 33905938
doi: 10.1016/j.scitotenv.2021.147105
Williams, R., Taylor, G. & Orr, C. pXRF method development for elemental analysis of archaeological soil. Archaeometry 62(6), 1145–1163 (2020).
doi: 10.1111/arcm.12583
Kozich, J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79(17), 5112–5120 (2013).
pubmed: 23793624
pmcid: 3753973
doi: 10.1128/AEM.01043-13
R: A Language and Environment for Statistical Computing [Computer Program] (R Foundation for Statistical Computing, 2020).
Signorell, A. DescTools: Tools for descriptive statistics (2016).
Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR) (2015).
Fox, J. & Weisberg, S. An {R} companion to applied regression (2011).
Wickham, H. ggplot2: Elegant graphics for data analysis (2016).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686 (2019).
doi: 10.21105/joss.01686
Wickham, H., Hester, J. & Francois, R. readr: Read rectangular Text Data. R package version 1.3.1 (2018). https://cran.r-project.org/web/packages/ggplot2/citation.html .
Warnes, G. R., Bolker, B., Bonebakker, L. et al. Gplots:Various R Programming Tools for Plotting Data. R package 3.03 (2020). https://cran.r-project.org/package=gplots .