The structural basis of odorant recognition in insect olfactory receptors.
Animals
Binding Sites
Cell Line
DEET
/ metabolism
Eugenol
/ metabolism
Insect Proteins
/ chemistry
Insecta
/ genetics
Ion Channel Gating
Ion Channels
/ chemistry
Models, Molecular
Mutation
Odorants
/ analysis
Protein Binding
Protein Structure, Quaternary
Receptors, Odorant
/ chemistry
Substrate Specificity
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
28
01
2021
accepted:
01
07
2021
pubmed:
6
8
2021
medline:
24
9
2021
entrez:
5
8
2021
Statut:
ppublish
Résumé
Olfactory systems must detect and discriminate amongst an enormous variety of odorants
Identifiants
pubmed: 34349260
doi: 10.1038/s41586-021-03794-8
pii: 10.1038/s41586-021-03794-8
pmc: PMC8410599
doi:
Substances chimiques
Insect Proteins
0
Ion Channels
0
Receptors, Odorant
0
DEET
134-62-3
Eugenol
3T8H1794QW
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
126-131Subventions
Organisme : NIDCD NIH HHS
ID : K99 DC019401
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI103171
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s).
Références
Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006).
pubmed: 17108953
doi: 10.1038/nature05402
Robertson, H. M. Molecular evolution of the major arthropod chemoreceptor gene families. Annu. Rev. Entomol. 64, 227–242 (2019).
pubmed: 30312552
doi: 10.1146/annurev-ento-020117-043322
Bear, D. M., Lassance, J. M., Hoekstra, H. E. & Datta, S. R. The evolving neural and genetic architecture of vertebrate olfaction. Curr. Biol. 26, R1039–R1049 (2016).
pubmed: 27780046
pmcid: 5104188
doi: 10.1016/j.cub.2016.09.011
Brand, P. et al. The origin of the odorant receptor gene family in insects. eLife 7, e38340 (2018).
pubmed: 30063003
pmcid: 6080948
doi: 10.7554/eLife.38340
Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).
pubmed: 1840504
doi: 10.1016/0092-8674(91)90418-X
Zhang, X. & Firestein, S. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5, 124–133 (2002).
pubmed: 11802173
doi: 10.1038/nn800
Sato, K. et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006 (2008).
pubmed: 18408712
doi: 10.1038/nature06850
Wicher, D. et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011 (2008).
pubmed: 18408711
doi: 10.1038/nature06861
Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).
pubmed: 15339651
doi: 10.1016/j.neuron.2004.08.019
Butterwick, J. A. et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature 560, 447–452 (2018).
pubmed: 30111839
pmcid: 6129982
doi: 10.1038/s41586-018-0420-8
Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).
pubmed: 16615896
doi: 10.1016/j.cell.2006.01.050
Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).
pubmed: 10089886
doi: 10.1016/S0092-8674(00)80581-4
Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J. D. Odor coding by a Mammalian receptor repertoire. Sci. Signal. 2, ra9 (2009).
pubmed: 19261596
pmcid: 2774247
doi: 10.1126/scisignal.2000016
Thoma, M. et al. Transcriptome surveys in silverfish suggest a multistep origin of the insect odorant receptor gene family. Front. Ecol. Evol. 7, 1–13 (2019).
doi: 10.3389/fevo.2019.00281
Jones, P. L., Pask, G. M., Rinker, D. C. & Zwiebel, L. J. Functional agonism of insect odorant receptor ion channels. Proc. Natl Acad. Sci. USA 108, 8821–8825 (2011).
pubmed: 21555561
pmcid: 3102409
doi: 10.1073/pnas.1102425108
Kenakin, T. A scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Mol. Pharmacol. 92, 414–424 (2017).
pubmed: 28679508
doi: 10.1124/mol.117.108787
Wang, G., Carey, A. F., Carlson, J. R. & Zwiebel, L. J. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA 107, 4418–4423 (2010).
pubmed: 20160092
pmcid: 2840125
doi: 10.1073/pnas.0913392107
Robertson, H. M. The insect chemoreceptor superfamily is ancient in animals. Chem. Senses 40, 609–614 (2015).
pubmed: 26354932
doi: 10.1093/chemse/bjv046
Pask, G. M., Jones, P. L., Rützler, M., Rinker, D. C. & Zwiebel, L. J. Heteromeric Anopheline odorant receptors exhibit distinct channel properties. PLoS ONE 6, e28774 (2011).
pubmed: 22174894
pmcid: 3235152
doi: 10.1371/journal.pone.0028774
Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).
pubmed: 15027866
doi: 10.1021/jm030644s
Vincent, F. et al. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J. Mol. Biol. 300, 127–139 (2000).
pubmed: 10864504
doi: 10.1006/jmbi.2000.3820
Brito, N. F., Moreira, M. F. & Melo, A. C. A. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 95, 51–65 (2016).
pubmed: 27639942
doi: 10.1016/j.jinsphys.2016.09.008
Hopf, T. A. et al. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat. Commun. 6, 6077 (2015).
pubmed: 25584517
doi: 10.1038/ncomms7077
Yuan, S. et al. Computational modeling of the olfactory receptor Olfr73 suggests a molecular basis for low potency of olfactory receptor-activating compounds. Commun. Biol. 2, 141 (2019).
pubmed: 31044166
pmcid: 6478719
doi: 10.1038/s42003-019-0384-8
Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nat. Neurosci. 3, 1248–1255 (2000).
pubmed: 11100145
doi: 10.1038/81774
Amoore, J. E. Stereochemical theory of olfaction. Nature 198, 271–272 (1963).
pubmed: 14012641
doi: 10.1038/198271a0
Auer, T. O. et al. Olfactory receptor and circuit evolution promote host specialization. Nature 579, 402–408 (2020).
pubmed: 32132713
pmcid: 7100913
doi: 10.1038/s41586-020-2073-7
Shaw, K. H., Johnson, T. K., Anderson, A., de Bruyne, M. & Warr, C. G. Molecular and functional evolution at the odorant receptor Or22 locus in Drosophila melanogaster. Mol. Biol. Evol. 36, 919–929 (2019).
pubmed: 30768139
pmcid: 6502086
doi: 10.1093/molbev/msz018
Yang, K., Huang, L. Q., Ning, C. & Wang, C. Z. Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. eLife 6, 1–21 (2017).
doi: 10.7554/eLife.29100
Yuvaraj, J. K. et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 19, 16 (2021).
pubmed: 33499862
pmcid: 7836466
doi: 10.1186/s12915-020-00946-6
DeGennaro, M. The mysterious multi-modal repellency of DEET. Fly (Austin) 9, 45–51 (2015).
doi: 10.1080/19336934.2015.1079360
Wilson, R. I. & Mainen, Z. F. Early events in olfactory processing. Annu. Rev. Neurosci. 29, 163–201 (2006).
pubmed: 16776583
doi: 10.1146/annurev.neuro.29.051605.112950
Charlier, L. et al. How broadly tuned olfactory receptors equally recognize their agonists. Human OR1G1 as a test case. Cell. Mol. Life Sci. 69, 4205–4213 (2012).
pubmed: 22926438
doi: 10.1007/s00018-012-1116-0
Baud, O. et al. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles. Sci. Rep. 5, 14948 (2015).
pubmed: 26449412
pmcid: 4598832
doi: 10.1038/srep14948
Katada, S., Hirokawa, T., Oka, Y., Suwa, M. & Touhara, K. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J. Neurosci. 25, 1806–1815 (2005).
pubmed: 15716417
pmcid: 6725943
doi: 10.1523/JNEUROSCI.4723-04.2005
Bohbot, J. D. & Dickens, J. C. Selectivity of odorant receptors in insects. Front. Cell. Neurosci. 6, 29 (2012).
pubmed: 22811659
pmcid: 3396151
doi: 10.3389/fncel.2012.00029
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protocols 9, 2574–2585 (2014).
pubmed: 25299155
doi: 10.1038/nprot.2014.173
Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).
pubmed: 16369541
doi: 10.1038/nbt1172
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563
doi: 10.1016/j.jsb.2005.07.007
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466
pmcid: 5494038
doi: 10.1038/nmeth.4193
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051
pmcid: 6250425
doi: 10.7554/eLife.42166
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980
pmcid: 6760662
doi: 10.1016/j.jsb.2015.08.008
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
pubmed: 14568533
doi: 10.1016/j.jmb.2003.07.013
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 54, 5.6.1–5.6.37 (2016).
doi: 10.1002/cpbi.3
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Paknejad, N. & Hite, R. K. Structural basis for the regulation of inositol trisphosphate receptors by Ca
pubmed: 30013099
pmcid: 6082148
doi: 10.1038/s41594-018-0089-6
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
doi: 10.1002/pro.3943
pubmed: 32881101
The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
Release 2020-4: Glide, Schrödinger, LLC (2020).
Shelley, J. C. et al. Epik: a software program for pK
pubmed: 17899391
doi: 10.1007/s10822-007-9133-z
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).
pubmed: 9195488
doi: 10.1016/S0263-7855(97)00009-X
Grabe, V. et al. Elucidating the neuronal architecture of olfactory glomeruli in the Drosophila antennal lobe. Cell Rep. 16, 3401–3413 (2016).
pubmed: 27653699
doi: 10.1016/j.celrep.2016.08.063
Schlief, M. L. & Wilson, R. I. Olfactory processing and behavior downstream from highly selective receptor neurons. Nat. Neurosci. 10, 623–630 (2007).
pubmed: 17417635
pmcid: 2838507
doi: 10.1038/nn1881
Münch, D. & Galizia, C. G. DoOR 2.0—comprehensive mapping of Drosophila melanogaster odorant responses. Sci. Rep. 6, 21841 (2016).
pubmed: 26912260
pmcid: 4766438
doi: 10.1038/srep21841
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
pubmed: 19151095
pmcid: 2672624
doi: 10.1093/bioinformatics/btp033
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).
pubmed: 19770504
pmcid: 2748967
doi: 10.1107/S0907444909029436