Global upper-atmospheric heating on Jupiter by the polar aurorae.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
25
02
2021
accepted:
08
06
2021
entrez:
5
8
2021
pubmed:
6
8
2021
medline:
6
8
2021
Statut:
ppublish
Résumé
Jupiter's upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives
Identifiants
pubmed: 34349293
doi: 10.1038/s41586-021-03706-w
pii: 10.1038/s41586-021-03706-w
pmc: PMC8338559
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
54-57Subventions
Organisme : Intramural NASA
ID : 80NSSC19K0546
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Strobel, D. F. & Smith, G. R. On the temperature of the Jovian thermosphere. J. Atmos. Sci. 30, 718–725 (1973).
doi: 10.1175/1520-0469(1973)030<0718:OTTOTJ>2.0.CO;2
Yelle, R. V. & Miller, S. Jupiter’s Thermosphere and Ionosphere 185–218 (Cambridge Univ. Press, 2004).
Yates, J. N., Ray, L. C., Achilleos, N., Witasse, O. & Altobelli, N. Magnetosphere–ionosphere–thermosphere coupling at Jupiter using a three-dimensional atmospheric general circulation model. J. Geophys. Res. Space Phys. 125, e26792 (2020).
doi: 10.1029/2019JA026792
Waite, J. H., Jr. et al. Electron precipitation and related aeronomy of the jovian thermosphere and ionosphere. J. Geophys. Res. 88, A8 (1983).
doi: 10.1029/JA088iA08p06143
Achilleos, N. et al. JIM: a time-dependent, three-dimensional model of Jupiter’s thermosphere and ionosphere. J. Geophys. Res. 103, 20089–20112 (1998).
doi: 10.1029/98JE00947
Bougher, S. W., Waite, J. H., Majeed, T. & Gladstone, G. R. Jupiter Thermospheric General Circulation Model (JTGCM): global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res. Planets 110, E04008 (2005).
doi: 10.1029/2003JE002230
Smith, C. G. A., Aylward, A. D., Millward, G. H., Miller, S. & Moore, L. E. An unexpected cooling effect in Saturn’s upper atmosphere. Nature 445, 399–401 (2007).
doi: 10.1038/nature05518
Ma, Y. J. et al. Plasma flow and related phenomena in planetary aeronomy. Space Sci. Rev. 139, 311–353 (2008).
doi: 10.1007/s11214-008-9389-1
Smith, C. G. A. & Aylward, A. D. Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 27, 199–230 (2009).
doi: 10.5194/angeo-27-199-2009
Yates, J. N., Achilleos, N. & Guio, P. Response of the Jovian thermosphere to a transient pulse in solar wind pressure. Planet. Space Sci. 91, 27–44 (2014).
doi: 10.1016/j.pss.2013.11.009
Schubert, G., Hickey, M. P. & Walterscheid, R. L. Heating of Jupiter’s thermosphere by the dissipation of upward propagating acoustic waves. Icarus 163, 398–413 (2003).
doi: 10.1016/S0019-1035(03)00078-2
O’Donoghue, J., Moore, L., Stallard, T. S. & Melin, H. Heating of Jupiter’s upper atmosphere above the Great Red Spot. Nature 536, 190–192 (2016).
doi: 10.1038/nature18940
Lian, Y. & Yelle, R. V. Damping of gravity waves by kinetic processes in Jupiter’s thermosphere. Icarus 329, 222–245 (2019).
doi: 10.1016/j.icarus.2019.04.001
McLean, I. S. et al. Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope. SPIE Conf. Series 3354, 566–578 (1998).
Uno, T. et al. Vertical emissivity profiles of Jupiter’s northern H
doi: 10.1002/2014JA020454
Melin, H. et al. On the anticorrelation between H
doi: 10.1093/mnras/stt2299
Lam, H. A. et al. A baseline spectroscopic study of the infrared auroras of Jupiter. Icarus 127, 379–393 (1997).
doi: 10.1006/icar.1997.5698
Connerney, J. E. P. et al. A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophys. Res. Lett. 45, 2590–2596 (2018).
doi: 10.1002/2018GL077312
Johnson, R. E. et al. Mapping H
doi: 10.1029/2018JA025511
Dinelli, B. M. et al. JUNO/JIRAM’s view of Jupiter’s H
Heelis, R. A. & Maute, A. Challenges to understanding the Earth’s ionosphere and thermosphere. J. Geophys. Res. Space Phys. 125, e27497 (2020).
doi: 10.1029/2019JA027497
Kita, H. et al. Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: evidence of preconditioning of the magnetosphere? Geophys. Res. Lett. 43, 6790–6798 (2016).
doi: 10.1002/2016GL069481
Cowley, S. W. H. et al. A simple axisymmetric model of magnetosphere–ionosphere coupling currents in Jupiter’s polar ionosphere. J. Geophys. Res. Space Phys. 110, A11209 (2005).
doi: 10.1029/2005JA011237
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y. & Yokoyama, T. Magnetic field variations in the jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. Space Phys. 110, A11208 (2005).
doi: 10.1029/2004JA010959
Figueiredo, C. A. O. B. et al. Large-scale traveling ionospheric disturbances observed by GPS dTEC maps over North and South America on Saint Patrick’s Day storm in 2015. J. Geophys. Res. Space Phys. 122, 4755–4763 (2017).
doi: 10.1002/2016JA023417
Brown, Z. et al. A pole-to-pole pressure–temperature map of Saturn’s thermosphere from Cassini Grand Finale data. Nat. Astron. 4, 872–879 (2020).
doi: 10.1038/s41550-020-1060-0
Moore, L. et al. Modelling H
Müller-Wodarg, I. C. F. et al. Atmospheric waves and their possible effect on the thermal structure of Saturn’s thermosphere. Geophys. Res. Lett. 46, 2372–2380 (2019).
doi: 10.1029/2018GL081124
Neale, L., Miller, S. & Tennyson, J. Spectroscopic properties of the H
doi: 10.1086/177341
Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. In Astronomical Data Analysis Software and Systems XVIII Vol. 411 (eds Bohlender, D. A. et al.) (Conference Series no. 251, Astronomical Society of the Pacific, 2009).