Lower regional gray matter volume in the absence of higher cortical amyloid burden in late-life depression.
Aged
Aged, 80 and over
Alzheimer Disease
/ physiopathology
Amyloid
/ metabolism
Amyloidogenic Proteins
/ metabolism
Amyloidosis
/ diagnostic imaging
Brain
/ diagnostic imaging
Cognition
/ physiology
Depression
/ pathology
Depressive Disorder
/ pathology
Female
Fluorodeoxyglucose F18
Gray Matter
/ diagnostic imaging
Humans
Late Onset Disorders
/ pathology
Magnetic Resonance Imaging
/ methods
Male
Middle Aged
Positron-Emission Tomography
/ methods
Risk Factors
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 08 2021
05 08 2021
Historique:
received:
11
02
2021
accepted:
21
06
2021
entrez:
6
8
2021
pubmed:
7
8
2021
medline:
9
11
2021
Statut:
epublish
Résumé
Late-life depression (LLD) is associated with a risk of developing Alzheimer's disease (AD). However, the role of AD-pathophysiology in LLD, and its association with clinical symptoms and cognitive function are elusive. In this study, one hundred subjects underwent amyloid positron emission tomography (PET) imaging with [
Identifiants
pubmed: 34354136
doi: 10.1038/s41598-021-95206-0
pii: 10.1038/s41598-021-95206-0
pmc: PMC8342521
doi:
Substances chimiques
Amyloid
0
Amyloidogenic Proteins
0
Fluorodeoxyglucose F18
0Z5B2CJX4D
Banques de données
EudraCT
['2009-018064-95']
Types de publication
Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15981Informations de copyright
© 2021. The Author(s).
Références
Jeuring, H. W. et al. A six-year prospective study of the prognosis and predictors in patients with late-life depression. Am. J. Geriatr. Psychiatry 26, 985–997 (2018).
pubmed: 29910018
doi: 10.1016/j.jagp.2018.05.005
Sheline, Y. I. et al. Cognitive function in late life depression: Relationships to depression severity, cerebrovascular risk factors and processing speed. Biol. Psychiatry 60, 58–65 (2006).
pubmed: 16414031
doi: 10.1016/j.biopsych.2005.09.019
Koenig, A. M. et al. Neuropsychological functioning in the acute and remitted states of late-life depression. J. Alzheimer’s Dis. 45, 175–185 (2015).
doi: 10.3233/JAD-148006
Riddle, M. et al. Longitudinal cognitive outcomes of clinical phenotypes of late-life depression. Am. J. Geriatr. Psychiatry 25, 1123–1134 (2017).
pubmed: 28479153
pmcid: 5600662
doi: 10.1016/j.jagp.2017.03.016
Nebes, R. D. et al. Persistence of cognitive impairment in geriatric patients following antidepressant treatment: A randomized, double-blind clinical trial with nortriptyline and paroxetine. J. Psychiatr. Res. 37, 99–108 (2003).
pubmed: 12842163
doi: 10.1016/S0022-3956(02)00085-7
O’Brien, J. T., Lloyd, A., McKeith, I., Gholkar, A. & Ferrier, N. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am. J. Psychiatry 161, 2081–2090 (2004).
pubmed: 15514410
doi: 10.1176/appi.ajp.161.11.2081
Da Silva, J., Gonçalves-Pereira, M., Xavier, M. & Mukaetova-Ladinska, E. B. Affective disorders and risk of developing dementia: Systematic review. Br. J. Psychiatry 202, 177–186 (2013).
pubmed: 23457181
doi: 10.1192/bjp.bp.111.101931
Diniz, B. S., Butters, M. A., Albert, S. M., Dew, M. A. & Reynolds, C. F. Late-life depression and risk of vascular dementia and Alzheimer’s disease: Systematic review and meta-analysis of community-based cohort studies. Br. J. Psychiatry 202, 329–335 (2013).
pubmed: 23637108
pmcid: 3640214
doi: 10.1192/bjp.bp.112.118307
Sweet, R. A. et al. Neuropathologic correlates of late-onset major depression. Neuropsychopharmacology 29, 2242–2250 (2004).
pubmed: 15354182
doi: 10.1038/sj.npp.1300554
Rapp, M. A. et al. Increased neurofibrillary tangles in patients with Alzheimer disease with comorbid depression. Am. J. Geriatr. Psychiatry 16, 168–174 (2008).
pubmed: 18239198
doi: 10.1097/JGP.0b013e31816029ec
Tsopelas, C. et al. Neuropathological correlates of late-life depression in older people. Br. J. Psychiatry 198, 109–114 (2011).
pubmed: 21282780
doi: 10.1192/bjp.bp.110.078816
Wilson, R. S., Capuano, A. W. & Boyle, P. A. Clinical-pathologic study of depressive symptoms and cognitive decline in old age. Neurology 83, 702–709 (2014).
pubmed: 25080520
pmcid: 4150132
doi: 10.1212/WNL.0000000000000715
Babulal, G. M. et al. Mood changes in cognitively normal older adults are linked to Alzheimer disease biomarker levels. Am. J. Geriatr. Psychiatry 24, 1095–1104 (2016).
pubmed: 27426238
pmcid: 5069099
doi: 10.1016/j.jagp.2016.04.004
Harrington, K. D. et al. Amyloid burden and incident depressive symptoms in cognitively normal older adults. Int. J. Geriatr. Psychiatry 32, 455–463 (2017).
pubmed: 27114112
doi: 10.1002/gps.4489
Donovan, N. J. et al. Longitudinal association of amyloid beta and anxious-depressive symptoms in cognitively normal older adults. Am. J. Psychiatry 175, 530–537 (2018).
pubmed: 29325447
pmcid: 5988933
doi: 10.1176/appi.ajp.2017.17040442
Madsen, K. et al. Lack of association between prior depressive episodes and cerebral [
pubmed: 22192243
doi: 10.1016/j.neurobiolaging.2011.11.021
Tateno, A. et al. Amyloid imaging with [
pubmed: 25335941
doi: 10.1002/gps.4215
Wu, K. Y. et al. Diversity of neurodegenerative pathophysiology in nondemented patients with major depressive disorder: Evidence of cerebral amyloidosis and hippocampal atrophy. Brain Behav. 8, 1–10 (2018).
doi: 10.1002/brb3.1016
Mackin, R. S. et al. Late life depression is associated with reduced cortical amyloid burden: Findings from the ADNI Depression Project. Biol. Psychiatry 89, 757–765. https://doi.org/10.1016/j.biopsych.2020.06.017 (2021).
doi: 10.1016/j.biopsych.2020.06.017
pubmed: 33189331
Jack, C. R. & Holtzman, D. M. Biomarker modeling of Alzheimer’s disease. Neuron 80, 1347–1358 (2013).
pubmed: 24360540
pmcid: 3928967
doi: 10.1016/j.neuron.2013.12.003
Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 19, 687–700 (2018).
pubmed: 30266970
pmcid: 7032048
doi: 10.1038/s41583-018-0067-3
Du, M. et al. Brain grey matter volume alterations in late-life depression. J. Psychiatry Neurosci. 39, 397–406 (2014).
pubmed: 24949867
pmcid: 4214874
doi: 10.1503/jpn.130275
Lebedeva, A. et al. Neuroanatomical correlates of late-life depression and associated cognitive changes. Neurobiol. Aging 36, 3090–3099 (2015).
pubmed: 26277679
doi: 10.1016/j.neurobiolaging.2015.04.020
Sexton, C. E., MacKay, C. E. & Ebmeier, K. P. A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. Am. J. Geriatr. Psychiatry 21, 184–195 (2013).
pubmed: 23343492
doi: 10.1016/j.jagp.2012.10.019
Geerlings, M. I. & Gerritsen, L. Late-life depression, hippocampal volumes, and hypothalamic-pituitary-adrenal axis regulation: A systematic review and meta-analysis. Biol. Psychiatry 82, 339–350 (2017).
pubmed: 28318491
doi: 10.1016/j.biopsych.2016.12.032
Colloby, S. J. et al. Cortical thickness and VBM-DARTEL in late-life depression. J. Affect. Disord. 133, 158–164 (2011).
pubmed: 21550668
doi: 10.1016/j.jad.2011.04.010
Sexton, C. E. et al. Magnetic resonance imaging in late-life depression: multimodal examination of network disruption. Arch. Gen. Psychiatry 69, 680–689 (2016).
Naismith, S. L., Norrie, L. M., Mowszowski, L. & Hickie, I. B. The neurobiology of depression in later-life: Clinical, neuropsychological, neuroimaging and pathophysiological features. Prog. Neurobiol. 98, 99–143 (2012).
pubmed: 22609700
doi: 10.1016/j.pneurobio.2012.05.009
Baldwin, R. C. & Tomenson, B. Depression in later life. A comparison of symptoms and risk factors in early and late onset cases. Br. J. Psychiatry 167, 649–652 (1995).
pubmed: 8564322
doi: 10.1192/bjp.167.5.649
Brodaty, H. et al. Increased rate of psychosis and psychomotor change in depression with age. Psychol. Med. 27, 1205–1213 (1997).
pubmed: 9300524
doi: 10.1017/S0033291797005436
Nelson, J. C., Bickford, D., Delucchi, K., Fiedorowicz, J. G. & Coryell, W. H. Risk of psychosis in recurrent episodes of psychotic and nonpsychotic major depressive disorder: A systematic review and meta-analysis. Am. J. Psychiatry 175, 897–904 (2018).
pubmed: 29792050
doi: 10.1176/appi.ajp.2018.17101138
De Winter, F. L. et al. No association of lower Hippocampal volume with Alzheimer’s disease pathology in late-life depression. Am. J. Psychiatry. 174, 237–245 (2017).
pubmed: 27539488
doi: 10.1176/appi.ajp.2016.16030319
Adamczuk, K. et al. Functional changes in the language network in response to increased amyloid B deposition in cognitively intact older adults. Cereb. Cortex 26, 358–373 (2016).
pubmed: 25452579
doi: 10.1093/cercor/bhu286
Sexton, C. E. et al. Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression. Psychol. Med. 42, 1195–1202 (2012).
pubmed: 22030013
doi: 10.1017/S0033291711002352
Vandenberghe, R. et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment a phase 2 trial. Ann. Neurol. 68, 319–329 (2010).
pubmed: 20687209
doi: 10.1002/ana.22068
Thomas, B. A. et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 38, 1104–1119 (2011).
pubmed: 21336694
doi: 10.1007/s00259-011-1745-9
Müller-Gärtner, H. W. et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J. Cereb. Blood Flow Metab. 12, 571–583 (1992).
pubmed: 1618936
doi: 10.1038/jcbfm.1992.81
Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).
pubmed: 20083042
pmcid: 2819840
doi: 10.1016/S1474-4422(09)70299-6
Mahgoub, N. & Alexopoulos, G. S. Amyloid hypothesis: Is there a role for antiamyloid treatment in late-life depression?. Am. J. Geriatr. Psychiatry 24, 239–247 (2016).
pubmed: 26946981
pmcid: 4801691
doi: 10.1016/j.jagp.2015.12.003
Smith GS, Kuwabara H, Nandi A, Gould NF, Nassery M, Savonenko A, et al. Molecular Imaging of Beta-Amyloid Deposition in Late-life Depression. Neurobiol. Aging 101, 85–93 (2021). https://doi.org/10.1016/j.neurobiolaging.2021.01.002 .
Smith, G. S. et al. The functional neuroanatomy of geriatric depression. Int. J. Geriat. Psychiatry 24, 798–808 (2009).
doi: 10.1002/gps.2185
Xie, C. et al. The co-existence of geriatric depression and amnestic mild cognitive impairment detrimentally affect gray matter volumes: Voxel-based morphometry study. Behav. Brain Res. 235, 244–250 (2012).
pubmed: 22909988
pmcid: 3561929
doi: 10.1016/j.bbr.2012.08.007
Dickerson, B. C. et al. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19, 497–510 (2009).
pubmed: 18632739
doi: 10.1093/cercor/bhn113
Whitwell, J. L. et al. Temporoparietal atrophy: A marker of AD pathology independent of clinical diagnosis. Neurobiol. Aging 32, 1531–1541 (2011).
pubmed: 19914744
doi: 10.1016/j.neurobiolaging.2009.10.012
Whitwell, J. L. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: A case-control study. Lancet Neurol. 11, 868–877 (2012).
pubmed: 22951070
pmcid: 3490201
doi: 10.1016/S1474-4422(12)70200-4
Monroe, S. M. & Harkness, K. L. Life stress, the “kindling” hypothesis, and the recurrence of depression: Considerations from a life stress perspective. Psychol. Rev. 112, 417–445 (2005).
pubmed: 15783292
doi: 10.1037/0033-295X.112.2.417
Ritchie, K. et al. Association of adverse childhood environment and 5-HTTLPR genotype with late-life depression. J. Clin. Psychiatry 70, 1281–1288 (2009).
pubmed: 19573496
pmcid: 3078522
doi: 10.4088/JCP.08m04510
Belleau, E. L., Treadway, M. T. & Pizzagalli, D. A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol. Psychiatry 85, 443–453 (2019).
pubmed: 30470559
doi: 10.1016/j.biopsych.2018.09.031
Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21, 806–812 (2016).
pubmed: 26122586
doi: 10.1038/mp.2015.69
Wolkowitz, O. W., Epel, E. S., Reus, V. I. & Mellon, S. H. Depression gets old fast: Do stress and depression accelerate cell aging?. Depress Anxiety 27, 327–338 (2010).
pubmed: 20376837
doi: 10.1002/da.20686
Freret, T., Gaudreau, P., Schumann-Bard, P., Billard, J. M. & Popa-Wagner, A. Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. J. Neural Transm. 122, 55–61 (2015).
doi: 10.1007/s00702-013-1154-2
Jack, C. R. et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann. Neurol. 71, 765–775 (2012).
pubmed: 22488240
pmcid: 3586223
doi: 10.1002/ana.22628
Jack, C. R. et al. Suspected non-Alzheimer disease pathophysiology–concept and controversy. Nat Rev Neurol 12, 117–124 (2016).
pubmed: 26782335
pmcid: 4784257
doi: 10.1038/nrneurol.2015.251
Crary, J. F. et al. Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).
pubmed: 25348064
pmcid: 4257842
doi: 10.1007/s00401-014-1349-0
LaPoint, M. R. et al. The association between tau PET and retrospective cortical thinning in clinically normal elderly. Neuroimage 157, 612–622 (2017).
pubmed: 28545932
doi: 10.1016/j.neuroimage.2017.05.049
Josephs, K. A. et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: A clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 133, 705–715 (2017).
pubmed: 28160067
pmcid: 6091858
doi: 10.1007/s00401-017-1681-2
Gatchel, J. R. et al. Depressive symptoms and tay accumulation in the inferior temporal lobe and entorhinal cortex in cognitively normal older adults: A pilot study. J. Alzheimer Dis. 59, 975–985 (2017).
doi: 10.3233/JAD-170001
Brown, E. E., Iwata, Y., Chung, J. K., Gerrestsen, P. & Graff-Guerrero, A. Tau in late-life depression: A systematic review and meta-analysis. J. Alzheimer Dis. 54, 615–633 (2016).
doi: 10.3233/JAD-160401
Weisenbach, S. L., Kim, J., Hammers, D., Konopacki, K. & Koppelmans, V. Linking late life depression and Alzheimer’s disease: Mechanisms and resilience. Curr. Behav. Neurosci. Rep. 6, 103–112 (2019).
pubmed: 33134032
pmcid: 7597973
doi: 10.1007/s40473-019-00180-7
Ballmaier, M. et al. Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am. J. Psychiatry 165, 229–237 (2008).
pubmed: 17986679
doi: 10.1176/appi.ajp.2007.07030506
Dickerson, B. C. & Eichenbaum, H. The episodic memory system: Neurocircuitry and disorders. Neuropsychopharmacology 35, 86–104 (2010).
pubmed: 19776728
doi: 10.1038/npp.2009.126
Epelbaum, S. et al. Neural correlates of episodic memory in the Memento cohort. Alzheimer’s Dement Transl. Res. Clin. Interv. 4, 224–233 (2018).
doi: 10.1016/j.trci.2018.03.010
Rugg, M. D. & King, D. R. Ventral lateral parietal cortex and episodic memory retrieval. Cortex 107, 238–250 (2018).
pubmed: 28802589
doi: 10.1016/j.cortex.2017.07.012
Wolk, D. A. & Dickerson, B. C. Fractionating verbal episodic memory in Alzheimer’s disease. Neuroimage 54, 1530–1539 (2011).
pubmed: 20832485
doi: 10.1016/j.neuroimage.2010.09.005
Buchsbaum, B. R. & D’Esposito, M. The search for the phonological store: From loop to convolution. J. Cogn. Neurosci. 20, 762–778 (2008).
pubmed: 18201133
doi: 10.1162/jocn.2008.20501
McDermott, L. M. & Ebmeier, K. P. A meta-analysis of depression severity and cognitive function. J. Affect. Disord. 119, 1–8 (2009).
pubmed: 19428120
doi: 10.1016/j.jad.2009.04.022
Chung, J. K. et al. Cortical amyloid β deposition and current depressive symptoms in Alzheimer disease and mild cognitive impairment. J. Geriatr. Psychiatry Neurol. 29, 149–159 (2016).
pubmed: 26400248
doi: 10.1177/0891988715606230
Goukasian, N. et al. Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: A multisite observational cohort study. BMJ Open 9, 1–10 (2019).
doi: 10.1136/bmjopen-2019-031947
Cirrito, J. R. et al. Serotonin signaling is associated with lower amyloid-βlevels and plaques in transgenic mice and humans. Proc. Natl. Acad. Sci. U. S. A. 108, 14968–14973 (2011).
pubmed: 21873225
pmcid: 3169155
doi: 10.1073/pnas.1107411108