Lower regional gray matter volume in the absence of higher cortical amyloid burden in late-life depression.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 08 2021
Historique:
received: 11 02 2021
accepted: 21 06 2021
entrez: 6 8 2021
pubmed: 7 8 2021
medline: 9 11 2021
Statut: epublish

Résumé

Late-life depression (LLD) is associated with a risk of developing Alzheimer's disease (AD). However, the role of AD-pathophysiology in LLD, and its association with clinical symptoms and cognitive function are elusive. In this study, one hundred subjects underwent amyloid positron emission tomography (PET) imaging with [

Identifiants

pubmed: 34354136
doi: 10.1038/s41598-021-95206-0
pii: 10.1038/s41598-021-95206-0
pmc: PMC8342521
doi:

Substances chimiques

Amyloid 0
Amyloidogenic Proteins 0
Fluorodeoxyglucose F18 0Z5B2CJX4D

Banques de données

EudraCT
['2009-018064-95']

Types de publication

Clinical Trial Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

15981

Informations de copyright

© 2021. The Author(s).

Références

Jeuring, H. W. et al. A six-year prospective study of the prognosis and predictors in patients with late-life depression. Am. J. Geriatr. Psychiatry 26, 985–997 (2018).
pubmed: 29910018 doi: 10.1016/j.jagp.2018.05.005
Sheline, Y. I. et al. Cognitive function in late life depression: Relationships to depression severity, cerebrovascular risk factors and processing speed. Biol. Psychiatry 60, 58–65 (2006).
pubmed: 16414031 doi: 10.1016/j.biopsych.2005.09.019
Koenig, A. M. et al. Neuropsychological functioning in the acute and remitted states of late-life depression. J. Alzheimer’s Dis. 45, 175–185 (2015).
doi: 10.3233/JAD-148006
Riddle, M. et al. Longitudinal cognitive outcomes of clinical phenotypes of late-life depression. Am. J. Geriatr. Psychiatry 25, 1123–1134 (2017).
pubmed: 28479153 pmcid: 5600662 doi: 10.1016/j.jagp.2017.03.016
Nebes, R. D. et al. Persistence of cognitive impairment in geriatric patients following antidepressant treatment: A randomized, double-blind clinical trial with nortriptyline and paroxetine. J. Psychiatr. Res. 37, 99–108 (2003).
pubmed: 12842163 doi: 10.1016/S0022-3956(02)00085-7
O’Brien, J. T., Lloyd, A., McKeith, I., Gholkar, A. & Ferrier, N. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am. J. Psychiatry 161, 2081–2090 (2004).
pubmed: 15514410 doi: 10.1176/appi.ajp.161.11.2081
Da Silva, J., Gonçalves-Pereira, M., Xavier, M. & Mukaetova-Ladinska, E. B. Affective disorders and risk of developing dementia: Systematic review. Br. J. Psychiatry 202, 177–186 (2013).
pubmed: 23457181 doi: 10.1192/bjp.bp.111.101931
Diniz, B. S., Butters, M. A., Albert, S. M., Dew, M. A. & Reynolds, C. F. Late-life depression and risk of vascular dementia and Alzheimer’s disease: Systematic review and meta-analysis of community-based cohort studies. Br. J. Psychiatry 202, 329–335 (2013).
pubmed: 23637108 pmcid: 3640214 doi: 10.1192/bjp.bp.112.118307
Sweet, R. A. et al. Neuropathologic correlates of late-onset major depression. Neuropsychopharmacology 29, 2242–2250 (2004).
pubmed: 15354182 doi: 10.1038/sj.npp.1300554
Rapp, M. A. et al. Increased neurofibrillary tangles in patients with Alzheimer disease with comorbid depression. Am. J. Geriatr. Psychiatry 16, 168–174 (2008).
pubmed: 18239198 doi: 10.1097/JGP.0b013e31816029ec
Tsopelas, C. et al. Neuropathological correlates of late-life depression in older people. Br. J. Psychiatry 198, 109–114 (2011).
pubmed: 21282780 doi: 10.1192/bjp.bp.110.078816
Wilson, R. S., Capuano, A. W. & Boyle, P. A. Clinical-pathologic study of depressive symptoms and cognitive decline in old age. Neurology 83, 702–709 (2014).
pubmed: 25080520 pmcid: 4150132 doi: 10.1212/WNL.0000000000000715
Babulal, G. M. et al. Mood changes in cognitively normal older adults are linked to Alzheimer disease biomarker levels. Am. J. Geriatr. Psychiatry 24, 1095–1104 (2016).
pubmed: 27426238 pmcid: 5069099 doi: 10.1016/j.jagp.2016.04.004
Harrington, K. D. et al. Amyloid burden and incident depressive symptoms in cognitively normal older adults. Int. J. Geriatr. Psychiatry 32, 455–463 (2017).
pubmed: 27114112 doi: 10.1002/gps.4489
Donovan, N. J. et al. Longitudinal association of amyloid beta and anxious-depressive symptoms in cognitively normal older adults. Am. J. Psychiatry 175, 530–537 (2018).
pubmed: 29325447 pmcid: 5988933 doi: 10.1176/appi.ajp.2017.17040442
Madsen, K. et al. Lack of association between prior depressive episodes and cerebral [
pubmed: 22192243 doi: 10.1016/j.neurobiolaging.2011.11.021
Tateno, A. et al. Amyloid imaging with [
pubmed: 25335941 doi: 10.1002/gps.4215
Wu, K. Y. et al. Diversity of neurodegenerative pathophysiology in nondemented patients with major depressive disorder: Evidence of cerebral amyloidosis and hippocampal atrophy. Brain Behav. 8, 1–10 (2018).
doi: 10.1002/brb3.1016
Mackin, R. S. et al. Late life depression is associated with reduced cortical amyloid burden: Findings from the ADNI Depression Project. Biol. Psychiatry 89, 757–765. https://doi.org/10.1016/j.biopsych.2020.06.017 (2021).
doi: 10.1016/j.biopsych.2020.06.017 pubmed: 33189331
Jack, C. R. & Holtzman, D. M. Biomarker modeling of Alzheimer’s disease. Neuron 80, 1347–1358 (2013).
pubmed: 24360540 pmcid: 3928967 doi: 10.1016/j.neuron.2013.12.003
Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 19, 687–700 (2018).
pubmed: 30266970 pmcid: 7032048 doi: 10.1038/s41583-018-0067-3
Du, M. et al. Brain grey matter volume alterations in late-life depression. J. Psychiatry Neurosci. 39, 397–406 (2014).
pubmed: 24949867 pmcid: 4214874 doi: 10.1503/jpn.130275
Lebedeva, A. et al. Neuroanatomical correlates of late-life depression and associated cognitive changes. Neurobiol. Aging 36, 3090–3099 (2015).
pubmed: 26277679 doi: 10.1016/j.neurobiolaging.2015.04.020
Sexton, C. E., MacKay, C. E. & Ebmeier, K. P. A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. Am. J. Geriatr. Psychiatry 21, 184–195 (2013).
pubmed: 23343492 doi: 10.1016/j.jagp.2012.10.019
Geerlings, M. I. & Gerritsen, L. Late-life depression, hippocampal volumes, and hypothalamic-pituitary-adrenal axis regulation: A systematic review and meta-analysis. Biol. Psychiatry 82, 339–350 (2017).
pubmed: 28318491 doi: 10.1016/j.biopsych.2016.12.032
Colloby, S. J. et al. Cortical thickness and VBM-DARTEL in late-life depression. J. Affect. Disord. 133, 158–164 (2011).
pubmed: 21550668 doi: 10.1016/j.jad.2011.04.010
Sexton, C. E. et al. Magnetic resonance imaging in late-life depression: multimodal examination of network disruption. Arch. Gen. Psychiatry 69, 680–689 (2016).
Naismith, S. L., Norrie, L. M., Mowszowski, L. & Hickie, I. B. The neurobiology of depression in later-life: Clinical, neuropsychological, neuroimaging and pathophysiological features. Prog. Neurobiol. 98, 99–143 (2012).
pubmed: 22609700 doi: 10.1016/j.pneurobio.2012.05.009
Baldwin, R. C. & Tomenson, B. Depression in later life. A comparison of symptoms and risk factors in early and late onset cases. Br. J. Psychiatry 167, 649–652 (1995).
pubmed: 8564322 doi: 10.1192/bjp.167.5.649
Brodaty, H. et al. Increased rate of psychosis and psychomotor change in depression with age. Psychol. Med. 27, 1205–1213 (1997).
pubmed: 9300524 doi: 10.1017/S0033291797005436
Nelson, J. C., Bickford, D., Delucchi, K., Fiedorowicz, J. G. & Coryell, W. H. Risk of psychosis in recurrent episodes of psychotic and nonpsychotic major depressive disorder: A systematic review and meta-analysis. Am. J. Psychiatry 175, 897–904 (2018).
pubmed: 29792050 doi: 10.1176/appi.ajp.2018.17101138
De Winter, F. L. et al. No association of lower Hippocampal volume with Alzheimer’s disease pathology in late-life depression. Am. J. Psychiatry. 174, 237–245 (2017).
pubmed: 27539488 doi: 10.1176/appi.ajp.2016.16030319
Adamczuk, K. et al. Functional changes in the language network in response to increased amyloid B deposition in cognitively intact older adults. Cereb. Cortex 26, 358–373 (2016).
pubmed: 25452579 doi: 10.1093/cercor/bhu286
Sexton, C. E. et al. Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression. Psychol. Med. 42, 1195–1202 (2012).
pubmed: 22030013 doi: 10.1017/S0033291711002352
Vandenberghe, R. et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment a phase 2 trial. Ann. Neurol. 68, 319–329 (2010).
pubmed: 20687209 doi: 10.1002/ana.22068
Thomas, B. A. et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 38, 1104–1119 (2011).
pubmed: 21336694 doi: 10.1007/s00259-011-1745-9
Müller-Gärtner, H. W. et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J. Cereb. Blood Flow Metab. 12, 571–583 (1992).
pubmed: 1618936 doi: 10.1038/jcbfm.1992.81
Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).
pubmed: 20083042 pmcid: 2819840 doi: 10.1016/S1474-4422(09)70299-6
Mahgoub, N. & Alexopoulos, G. S. Amyloid hypothesis: Is there a role for antiamyloid treatment in late-life depression?. Am. J. Geriatr. Psychiatry 24, 239–247 (2016).
pubmed: 26946981 pmcid: 4801691 doi: 10.1016/j.jagp.2015.12.003
Smith GS, Kuwabara H, Nandi A, Gould NF, Nassery M, Savonenko A, et al. Molecular Imaging of Beta-Amyloid Deposition in Late-life Depression. Neurobiol. Aging 101, 85–93 (2021). https://doi.org/10.1016/j.neurobiolaging.2021.01.002 .
Smith, G. S. et al. The functional neuroanatomy of geriatric depression. Int. J. Geriat. Psychiatry 24, 798–808 (2009).
doi: 10.1002/gps.2185
Xie, C. et al. The co-existence of geriatric depression and amnestic mild cognitive impairment detrimentally affect gray matter volumes: Voxel-based morphometry study. Behav. Brain Res. 235, 244–250 (2012).
pubmed: 22909988 pmcid: 3561929 doi: 10.1016/j.bbr.2012.08.007
Dickerson, B. C. et al. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19, 497–510 (2009).
pubmed: 18632739 doi: 10.1093/cercor/bhn113
Whitwell, J. L. et al. Temporoparietal atrophy: A marker of AD pathology independent of clinical diagnosis. Neurobiol. Aging 32, 1531–1541 (2011).
pubmed: 19914744 doi: 10.1016/j.neurobiolaging.2009.10.012
Whitwell, J. L. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: A case-control study. Lancet Neurol. 11, 868–877 (2012).
pubmed: 22951070 pmcid: 3490201 doi: 10.1016/S1474-4422(12)70200-4
Monroe, S. M. & Harkness, K. L. Life stress, the “kindling” hypothesis, and the recurrence of depression: Considerations from a life stress perspective. Psychol. Rev. 112, 417–445 (2005).
pubmed: 15783292 doi: 10.1037/0033-295X.112.2.417
Ritchie, K. et al. Association of adverse childhood environment and 5-HTTLPR genotype with late-life depression. J. Clin. Psychiatry 70, 1281–1288 (2009).
pubmed: 19573496 pmcid: 3078522 doi: 10.4088/JCP.08m04510
Belleau, E. L., Treadway, M. T. & Pizzagalli, D. A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol. Psychiatry 85, 443–453 (2019).
pubmed: 30470559 doi: 10.1016/j.biopsych.2018.09.031
Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21, 806–812 (2016).
pubmed: 26122586 doi: 10.1038/mp.2015.69
Wolkowitz, O. W., Epel, E. S., Reus, V. I. & Mellon, S. H. Depression gets old fast: Do stress and depression accelerate cell aging?. Depress Anxiety 27, 327–338 (2010).
pubmed: 20376837 doi: 10.1002/da.20686
Freret, T., Gaudreau, P., Schumann-Bard, P., Billard, J. M. & Popa-Wagner, A. Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. J. Neural Transm. 122, 55–61 (2015).
doi: 10.1007/s00702-013-1154-2
Jack, C. R. et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann. Neurol. 71, 765–775 (2012).
pubmed: 22488240 pmcid: 3586223 doi: 10.1002/ana.22628
Jack, C. R. et al. Suspected non-Alzheimer disease pathophysiology–concept and controversy. Nat Rev Neurol 12, 117–124 (2016).
pubmed: 26782335 pmcid: 4784257 doi: 10.1038/nrneurol.2015.251
Crary, J. F. et al. Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).
pubmed: 25348064 pmcid: 4257842 doi: 10.1007/s00401-014-1349-0
LaPoint, M. R. et al. The association between tau PET and retrospective cortical thinning in clinically normal elderly. Neuroimage 157, 612–622 (2017).
pubmed: 28545932 doi: 10.1016/j.neuroimage.2017.05.049
Josephs, K. A. et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: A clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 133, 705–715 (2017).
pubmed: 28160067 pmcid: 6091858 doi: 10.1007/s00401-017-1681-2
Gatchel, J. R. et al. Depressive symptoms and tay accumulation in the inferior temporal lobe and entorhinal cortex in cognitively normal older adults: A pilot study. J. Alzheimer Dis. 59, 975–985 (2017).
doi: 10.3233/JAD-170001
Brown, E. E., Iwata, Y., Chung, J. K., Gerrestsen, P. & Graff-Guerrero, A. Tau in late-life depression: A systematic review and meta-analysis. J. Alzheimer Dis. 54, 615–633 (2016).
doi: 10.3233/JAD-160401
Weisenbach, S. L., Kim, J., Hammers, D., Konopacki, K. & Koppelmans, V. Linking late life depression and Alzheimer’s disease: Mechanisms and resilience. Curr. Behav. Neurosci. Rep. 6, 103–112 (2019).
pubmed: 33134032 pmcid: 7597973 doi: 10.1007/s40473-019-00180-7
Ballmaier, M. et al. Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am. J. Psychiatry 165, 229–237 (2008).
pubmed: 17986679 doi: 10.1176/appi.ajp.2007.07030506
Dickerson, B. C. & Eichenbaum, H. The episodic memory system: Neurocircuitry and disorders. Neuropsychopharmacology 35, 86–104 (2010).
pubmed: 19776728 doi: 10.1038/npp.2009.126
Epelbaum, S. et al. Neural correlates of episodic memory in the Memento cohort. Alzheimer’s Dement Transl. Res. Clin. Interv. 4, 224–233 (2018).
doi: 10.1016/j.trci.2018.03.010
Rugg, M. D. & King, D. R. Ventral lateral parietal cortex and episodic memory retrieval. Cortex 107, 238–250 (2018).
pubmed: 28802589 doi: 10.1016/j.cortex.2017.07.012
Wolk, D. A. & Dickerson, B. C. Fractionating verbal episodic memory in Alzheimer’s disease. Neuroimage 54, 1530–1539 (2011).
pubmed: 20832485 doi: 10.1016/j.neuroimage.2010.09.005
Buchsbaum, B. R. & D’Esposito, M. The search for the phonological store: From loop to convolution. J. Cogn. Neurosci. 20, 762–778 (2008).
pubmed: 18201133 doi: 10.1162/jocn.2008.20501
McDermott, L. M. & Ebmeier, K. P. A meta-analysis of depression severity and cognitive function. J. Affect. Disord. 119, 1–8 (2009).
pubmed: 19428120 doi: 10.1016/j.jad.2009.04.022
Chung, J. K. et al. Cortical amyloid β deposition and current depressive symptoms in Alzheimer disease and mild cognitive impairment. J. Geriatr. Psychiatry Neurol. 29, 149–159 (2016).
pubmed: 26400248 doi: 10.1177/0891988715606230
Goukasian, N. et al. Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: A multisite observational cohort study. BMJ Open 9, 1–10 (2019).
doi: 10.1136/bmjopen-2019-031947
Cirrito, J. R. et al. Serotonin signaling is associated with lower amyloid-βlevels and plaques in transgenic mice and humans. Proc. Natl. Acad. Sci. U. S. A. 108, 14968–14973 (2011).
pubmed: 21873225 pmcid: 3169155 doi: 10.1073/pnas.1107411108

Auteurs

Akihiro Takamiya (A)

Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium.
Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.

Thomas Vande Casteele (T)

Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium.

Michel Koole (M)

Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium.

François-Laurent De Winter (FL)

Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium.

Filip Bouckaert (F)

Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium.

Jan Van den Stock (J)

Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium.

Stefan Sunaert (S)

Department of Imaging & Pathology, Translational MRI, KU Leuven, Leuven, Belgium.
Department of Radiology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium.

Patrick Dupont (P)

Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Alzheimer Research Centre KU Leuven, Leuven Brain Institute, KU Leuven, Leuven, Belgium.

Rik Vandenberghe (R)

Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Alzheimer Research Centre KU Leuven, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Neurology Department, University Hospitals Leuven (UZ Leuven), Leuven, Belgium.

Koen Van Laere (K)

Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium.

Mathieu Vandenbulcke (M)

Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium. mathieu.vandenbulcke@uzleuven.be.
Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium. mathieu.vandenbulcke@uzleuven.be.

Louise Emsell (L)

Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium.
Department of Imaging & Pathology, Translational MRI, KU Leuven, Leuven, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH