A Bayes-inspired theory for optimally building an efficient coarse-grained folding force field.


Journal

Communications in information and systems
ISSN: 2163-4548
Titre abrégé: Commun Inf Syst
Pays: United States
ID NLM: 101749708

Informations de publication

Date de publication:
2021
Historique:
entrez: 6 8 2021
pubmed: 7 8 2021
medline: 7 8 2021
Statut: ppublish

Résumé

Because of their potential utility in predicting conformational changes and assessing folding dynamics, coarse-grained (CG) RNA folding models are appealing for rapid characterization of RNA molecules. Previously, we reported the iterative simulated RNA reference state (IsRNA) method for parameterizing a CG force field for RNA folding, which consecutively updates the simulation force field to reflect marginal distributions of folding coordinates in the structure database and extract various energy terms. While the IsRNA model was validated by showing close agreement between the IsRNA-simulated and experimentally observed distributions, here, we expand our theoretical understanding of the model and, in doing so, improve the parameterization process to optimize the subset of included folding coordinates, which leads to accelerated simulations. Using statistical mechanical theory, we analyze the underlying, Bayesian concept that drives parameterization of the energy function, providing a general method for developing predictive, knowledge-based, polymer force fields on the basis of limited data. Furthermore, we propose an optimal parameterization procedure, based on the principal of maximum entropy.

Identifiants

pubmed: 34354546
doi: 10.4310/cis.2021.v21.n1.a4
pmc: PMC8336718
mid: NIHMS1690260
doi:

Types de publication

Journal Article

Langues

eng

Pagination

65-83

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM117059
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM134919
Pays : United States

Références

Cold Spring Harb Perspect Biol. 2019 Jul 1;11(7):
pubmed: 31262948
RNA. 2009 Feb;15(2):189-99
pubmed: 19144906
Nucleic Acids Res. 2016 Apr 20;44(7):e63
pubmed: 26687716
RNA. 2008 Jun;14(6):1164-73
pubmed: 18456842
Neuron. 2018 Sep 19;99(6):1129-1143
pubmed: 30236283
Nat Commun. 2017 Nov 13;8(1):1458
pubmed: 29133841
J Chem Theory Comput. 2015 Jul 14;11(7):3510-22
pubmed: 26575783
J Phys Chem B. 2013 Mar 21;117(11):3135-44
pubmed: 23438338
J Chem Phys. 2013 Sep 7;139(9):090901
pubmed: 24028092
Nature. 2008 Mar 6;452(7183):51-5
pubmed: 18322526
Sci Rep. 2017 Apr 10;7:45812
pubmed: 28393861
J Phys Chem Lett. 2014 May 15;5(10):1771-82
pubmed: 26270382
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16820-5
pubmed: 24043821
J Chem Phys. 2014 Jun 21;140(23):235102
pubmed: 24952569
J Chem Phys. 2014 Sep 14;141(10):105102
pubmed: 25217954
J Chem Theory Comput. 2018 Apr 10;14(4):2230-2239
pubmed: 29499114
Nucleic Acids Res. 2012 Aug;40(14):e112
pubmed: 22539264
Biochemistry. 1995 Nov 7;34(44):14416-27
pubmed: 7578046
J Phys Chem B. 2013 May 2;117(17):4901-11
pubmed: 23527587
Curr Opin Struct Biol. 2012 Jun;22(3):279-86
pubmed: 22579413
Biophys J. 2017 Jul 25;113(2):246-256
pubmed: 28633759
J Phys Chem B. 2018 May 10;122(18):4771-4783
pubmed: 29659274
J Comput Chem. 2009 Jul 30;30(10):1545-614
pubmed: 19444816
J Chem Theory Comput. 2020 Mar 10;16(3):1411-1419
pubmed: 31999452
RNA. 2000 Sep;6(9):1316-24
pubmed: 10999608
J Phys Chem B. 2010 Oct 28;114(42):13497-506
pubmed: 20883011
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14664-9
pubmed: 17726102
J Chem Theory Comput. 2020 Jan 14;16(1):773-781
pubmed: 31756104
J Phys Chem B. 2011 Apr 14;115(14):4216-26
pubmed: 21413701
Phys Rev Lett. 2013 Mar 1;110(9):098101
pubmed: 23496746

Auteurs

Travis Hurst (T)

Department of Physics, University of Missouri-Columbia, Columbia, MO 65211, USA.

Dong Zhang (D)

Department of Physics, University of Missouri-Columbia.

Yuanzhe Zhou (Y)

Department of Physics, University of Missouri-Columbia, Columbia, MO 65211, USA.

Shi-Jie Chen (SJ)

Department of Physics, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO 65211, USA.

Classifications MeSH