On the Accuracy of QM/MM Models: A Systematic Study of Intramolecular Proton Transfer Reactions of Amino Acids in Water.
Journal
The journal of physical chemistry. B
ISSN: 1520-5207
Titre abrégé: J Phys Chem B
Pays: United States
ID NLM: 101157530
Informations de publication
Date de publication:
19 08 2021
19 08 2021
Historique:
pubmed:
7
8
2021
medline:
21
10
2021
entrez:
6
8
2021
Statut:
ppublish
Résumé
This work presents a systematic assessment of QM/QM' and QM/MM models with respect to direct QM calculations for the tautomerization (neutral to zwitterion) reactions of amino acids (glycine, alanine, valine, aspartate, and neutral and protonated histidine) solvated in a 160 water cluster. The effect of varying QM region size and choice of embedding potentials, including fixed-charge and polarizable molecular mechanics force fields (TIP3P and EFP) and various semiempirical QM methods (PM7, GFN2-xTB, DFTBA, DFTB3, HF-3c, and PBEh-3c), on the accuracy of the models was examined. A surprising finding was that molecular mechanics force fields outperformed many of the semiempirical methods. Generally, the errors in the QM/QM' and QM/MM models converge slowly with respect to the QM region size, requiring 50 or more waters to be included in the QM region before the error in the model falls below 1 kcal mol
Identifiants
pubmed: 34355564
doi: 10.1021/acs.jpcb.1c04876
doi:
Substances chimiques
Amino Acids
0
Protons
0
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM