Pipelines and Systems for Threshold-Avoiding Quantification of LC-MS/MS Data.
Journal
Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536
Informations de publication
Date de publication:
17 08 2021
17 08 2021
Historique:
pubmed:
7
8
2021
medline:
1
9
2021
entrez:
6
8
2021
Statut:
ppublish
Résumé
The accurate processing of complex liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) data from biological samples is a major challenge for metabolomics, proteomics, and related approaches. Here, we present the pipelines and systems for threshold-avoiding quantification (PASTAQ) LC-MS/MS preprocessing toolset, which allows highly accurate quantification of data-dependent acquisition LC-MS/MS datasets. PASTAQ performs compound quantification using single-stage (MS1) data and implements novel algorithms for high-performance and accurate quantification, retention time alignment, feature detection, and linking annotations from multiple identification engines. PASTAQ offers straightforward parameterization and automatic generation of quality control plots for data and preprocessing assessment. This design results in smaller variance when analyzing replicates of proteomes mixed with known ratios and allows the detection of peptides over a larger dynamic concentration range compared to widely used proteomics preprocessing tools. The performance of the pipeline is also demonstrated in a biological human serum dataset for the identification of gender-related proteins.
Identifiants
pubmed: 34355890
doi: 10.1021/acs.analchem.1c01892
pmc: PMC8374884
doi:
Substances chimiques
Peptides
0
Proteome
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11215-11224Références
Nat Methods. 2017 May;14(5):513-520
pubmed: 28394336
Science. 2015 Jan 23;347(6220):1260419
pubmed: 25613900
Nat Rev Mol Cell Biol. 2004 Sep;5(9):763-9
pubmed: 15340383
Science. 2017 May 26;356(6340):
pubmed: 28495876
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Nat Methods. 2007 Nov;4(11):923-5
pubmed: 17952086
Mol Cell Proteomics. 2012 Jun;11(6):O111.016717
pubmed: 22261725
Anal Chem. 2008 May 1;80(9):3095-104
pubmed: 18396914
Anal Chem. 2004 Oct 15;76(20):6085-96
pubmed: 15481957
Science. 2017 Aug 18;357(6352):
pubmed: 28818916
Anal Chem. 1997 Feb 15;69(4):767-76
pubmed: 9043199
Mol Cell Proteomics. 2005 Oct;4(10):1419-40
pubmed: 16009968
J Assist Reprod Genet. 2019 Jun;36(6):1101-1107
pubmed: 31073723
Cell Syst. 2016 Mar 23;2(3):185-95
pubmed: 27135364
Mol Cell Proteomics. 2011 Jan;10(1):R110.000133
pubmed: 20716697
J Sep Sci. 2007 Sep;30(14):2198-203
pubmed: 17668910
Nat Biotechnol. 2015 Jan;33(1):22-4
pubmed: 25574629
Nat Biotechnol. 2012 Oct;30(10):918-20
pubmed: 23051804
J Proteome Res. 2013 Apr 5;12(4):1628-44
pubmed: 23391308
Anal Chem. 2006 Feb 1;78(3):779-87
pubmed: 16448051
J Proteome Res. 2018 Jul 6;17(7):2552-2555
pubmed: 29774740
J Proteome Res. 2010 Aug 6;9(8):4152-60
pubmed: 20578722
Nat Commun. 2014 Oct 31;5:5277
pubmed: 25358478
Mass Spectrom Rev. 1999 May-Aug;18(3-4):187-279
pubmed: 10568041
Electrophoresis. 1999 Dec;20(18):3551-67
pubmed: 10612281
Anal Chem. 2011 Oct 15;83(20):7786-94
pubmed: 21879761
J Proteome Res. 2016 Sep 2;15(9):3204-13
pubmed: 27447838
J Am Soc Mass Spectrom. 1995 Apr;6(4):229-33
pubmed: 24214167
Nat Biotechnol. 2004 Nov;22(11):1459-66
pubmed: 15529173
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Bioinformatics. 2004 Jun 12;20(9):1466-7
pubmed: 14976030
Anal Chem. 2003 Sep 1;75(17):4646-58
pubmed: 14632076
Clin Biochem. 2005 Apr;38(4):310-8
pubmed: 15766732
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489
pubmed: 33237286
J Proteome Res. 2014 Aug 1;13(8):3679-84
pubmed: 24909410