An Improved Stereo Matching Algorithm for Vehicle Speed Measurement System Based on Spatial and Temporal Image Fusion.
LNCC
STIF
image fusion
stereo matching
vehicle speed measurement
Journal
Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874
Informations de publication
Date de publication:
07 Jul 2021
07 Jul 2021
Historique:
received:
14
06
2021
revised:
04
07
2021
accepted:
05
07
2021
entrez:
6
8
2021
pubmed:
7
8
2021
medline:
7
8
2021
Statut:
epublish
Résumé
This paper proposes an improved stereo matching algorithm for vehicle speed measurement system based on spatial and temporal image fusion (STIF). Firstly, the matching point pairs in the license plate area with obviously abnormal distance to the camera are roughly removed according to the characteristic of license plate specification. Secondly, more mismatching point pairs are finely removed according to local neighborhood consistency constraint (LNCC). Thirdly, the optimum speed measurement point pairs are selected for successive stereo frame pairs by STIF of binocular stereo video, so that the 3D points corresponding to the matching point pairs for speed measurement in the successive stereo frame pairs are in the same position on the real vehicle, which can significantly improve the vehicle speed measurement accuracy. LNCC and STIF can be used not only for license plate, but also for vehicle logo, light, mirror etc. Experimental results demonstrate that the vehicle speed measurement system with the proposed LNCC+STIF stereo matching algorithm can significantly outperform the state-of-the-art system in accuracy.
Identifiants
pubmed: 34356407
pii: e23070866
doi: 10.3390/e23070866
pmc: PMC8305597
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Science and Technology Department of Henan Province
ID : 214200510013
Organisme : Education Department of Henan Province
ID : 19A510005, 21A510016, 21A520052
Organisme : Human Resources and Social Security Department of Henan Province
ID : HRSS2021[36]
Organisme : Zhongyuan University of Technology
ID : Zhongyuan University of Technology
Références
IEEE Trans Image Process. 2019 Aug;28(8):4045-4059
pubmed: 30908218
Med Image Anal. 1999 Dec;3(4):425-40
pubmed: 10709705
Entropy (Basel). 2021 Feb 21;23(2):
pubmed: 33670018
IEEE Trans Neural Netw Learn Syst. 2019 Dec;30(12):3584-3597
pubmed: 30371389
Entropy (Basel). 2019 Jun 25;21(6):
pubmed: 33267336
IEEE Trans Image Process. 2019 Aug 26;:
pubmed: 31449018
IEEE Trans Pattern Anal Mach Intell. 2020 Dec 03;PP:
pubmed: 33270559
IEEE Trans Vis Comput Graph. 2015 Sep;21(9):1058-71
pubmed: 26357287
IEEE Trans Image Process. 2019 Mar;28(3):1191-1204
pubmed: 30281450
IEEE Trans Image Process. 1996;5(8):1266-71
pubmed: 18285214
Entropy (Basel). 2021 May 27;23(6):
pubmed: 34072269
IEEE Trans Pattern Anal Mach Intell. 2017 Feb;39(2):371-384
pubmed: 27019474
IEEE Trans Image Process. 2014 Apr;23(4):1706-21
pubmed: 24808341
IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):87-104
pubmed: 19926901
IEEE Trans Med Imaging. 2018 Jan;37(1):138-150
pubmed: 28858790