Genomic Selection for End-Use Quality and Processing Traits in Soft White Winter Wheat Breeding Program with Machine and Deep Learning Models.

deep learning end-use quality genomic selection machine learning wheat breeding

Journal

Biology
ISSN: 2079-7737
Titre abrégé: Biology (Basel)
Pays: Switzerland
ID NLM: 101587988

Informations de publication

Date de publication:
20 Jul 2021
Historique:
received: 30 05 2021
revised: 13 07 2021
accepted: 17 07 2021
entrez: 6 8 2021
pubmed: 7 8 2021
medline: 7 8 2021
Statut: epublish

Résumé

Breeding for grain yield, biotic and abiotic stress resistance, and end-use quality are important goals of wheat breeding programs. Screening for end-use quality traits is usually secondary to grain yield due to high labor needs, cost of testing, and large seed requirements for phenotyping. Genomic selection provides an alternative to predict performance using genome-wide markers under forward and across location predictions, where a previous year's dataset can be used to build the models. Due to large datasets in breeding programs, we explored the potential of the machine and deep learning models to predict fourteen end-use quality traits in a winter wheat breeding program. The population used consisted of 666 wheat genotypes screened for five years (2015-19) at two locations (Pullman and Lind, WA, USA). Nine different models, including two machine learning (random forest and support vector machine) and two deep learning models (convolutional neural network and multilayer perceptron) were explored for cross-validation, forward, and across locations predictions. The prediction accuracies for different traits varied from 0.45-0.81, 0.29-0.55, and 0.27-0.50 under cross-validation, forward, and across location predictions. In general, forward prediction accuracies kept increasing over time due to increments in training data size and was more evident for machine and deep learning models. Deep learning models were superior over the traditional ridge regression best linear unbiased prediction (RRBLUP) and Bayesian models under all prediction scenarios. The high accuracy observed for end-use quality traits in this study support predicting them in early generations, leading to the advancement of superior genotypes to more extensive grain yield trails. Furthermore, the superior performance of machine and deep learning models strengthens the idea to include them in large scale breeding programs for predicting complex traits.

Identifiants

pubmed: 34356544
pii: biology10070689
doi: 10.3390/biology10070689
pmc: PMC8301459
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Agriculture and Food Research Initiative Competitive Grant
ID : 2017-67007-25939
Organisme : Hatch project
ID : 1014919
Organisme : USDA ARS CRIS Project
ID : 2090-43440008-00D

Références

Theor Appl Genet. 2016 Feb;129(2):203-13
pubmed: 26649866
G3 (Bethesda). 2013 Mar;3(3):481-91
pubmed: 23450123
Front Plant Sci. 2018 Feb 02;9:69
pubmed: 29456546
PLoS One. 2012;7(2):e32253
pubmed: 22389690
Genetics. 2013 Jul;194(3):597-607
pubmed: 23640517
Genetics. 2006 Jul;173(3):1761-76
pubmed: 16648593
Theor Appl Genet. 2016 Sep;129(9):1697-710
pubmed: 27262436
Plant Genome. 2017 Nov;10(3):
pubmed: 29293807
G3 (Bethesda). 2019 May 7;9(5):1545-1556
pubmed: 30858235
Planta. 2018 Nov;248(5):1307-1318
pubmed: 30101399
Front Plant Sci. 2021 Jan 05;11:613325
pubmed: 33469463
Theor Appl Genet. 2014 Mar;127(3):595-607
pubmed: 24337101
Front Genet. 2020 Nov 12;11:561497
pubmed: 33281867
BMC Genomics. 2021 Jan 6;22(1):19
pubmed: 33407114
Theor Appl Genet. 2012 Apr;124(6):1079-96
pubmed: 22186959
Theor Appl Genet. 2017 Dec;130(12):2505-2519
pubmed: 28840266
Plant Mol Biol. 2008 Feb;66(3):205-19
pubmed: 18049798
Plant Genome. 2016 Jul;9(2):
pubmed: 27898810
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
G3 (Bethesda). 2019 Feb 7;9(2):601-618
pubmed: 30593512
Genetics. 2018 Nov;210(3):809-819
pubmed: 30171033
Sci Rep. 2020 May 13;10(1):8205
pubmed: 32398811
Bioinformatics. 2007 Oct 1;23(19):2633-5
pubmed: 17586829
Theor Appl Genet. 2021 Aug;134(8):2547-2559
pubmed: 34052883
Theor Appl Genet. 2016 Mar;129(3):641-51
pubmed: 26747048
Genes (Basel). 2019 Aug 31;10(9):
pubmed: 31480460
Appl Transl Genom. 2016 Oct 29;11:3-8
pubmed: 28018844
Theor Appl Genet. 2015 Jan;128(1):145-58
pubmed: 25367380
Front Plant Sci. 2019 Nov 08;10:1311
pubmed: 31787990
G3 (Bethesda). 2018 Dec 10;8(12):3813-3828
pubmed: 30291107
G3 (Bethesda). 2019 May 7;9(5):1519-1531
pubmed: 30877079
Trends Plant Sci. 2017 Nov;22(11):961-975
pubmed: 28965742
Plant Genome. 2019 Nov;12(3):1-15
pubmed: 33016592
Front Plant Sci. 2018 Mar 09;9:271
pubmed: 29593752
Nat Genet. 2019 Oct;51(10):1530-1539
pubmed: 31548720
G3 (Bethesda). 2019 Sep 4;9(9):2913-2924
pubmed: 31289023
Genetics. 2001 Apr;157(4):1819-29
pubmed: 11290733
Science. 2018 Aug 17;361(6403):
pubmed: 30115783
Theor Appl Genet. 2013 Oct;126(10):2575-86
pubmed: 23907359
Plant Genome. 2015 Mar;8(1):eplantgenome2014.09.0046
pubmed: 33228293
G3 (Bethesda). 2018 Dec 10;8(12):3829-3840
pubmed: 30291108
Front Genet. 2019 Nov 22;10:1091
pubmed: 31824557
Plants (Basel). 2021 Apr 11;10(4):
pubmed: 33920359
Theor Appl Genet. 2018 Feb;131(2):477-493
pubmed: 29063161
Front Plant Sci. 2021 Feb 12;12:613300
pubmed: 33643347
Heredity (Edinb). 2014 Jan;112(1):48-60
pubmed: 23572121
Front Plant Sci. 2019 May 22;10:621
pubmed: 31191564
Front Plant Sci. 2020 Jul 31;11:1091
pubmed: 32849679
Genetics. 2014 Oct;198(2):483-95
pubmed: 25009151

Auteurs

Karansher Singh Sandhu (KS)

Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.

Meriem Aoun (M)

Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.

Craig F Morris (CF)

USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Building, Washington State University, Pullman, WA 99164, USA.

Arron H Carter (AH)

Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.

Classifications MeSH