Proton Conductive, Low Methanol Crossover Cellulose-Based Membranes.

crosslinking fuel cells proton exchange membranes sulfated cellulose

Journal

Membranes
ISSN: 2077-0375
Titre abrégé: Membranes (Basel)
Pays: Switzerland
ID NLM: 101577807

Informations de publication

Date de publication:
16 Jul 2021
Historique:
received: 26 06 2021
revised: 11 07 2021
accepted: 13 07 2021
entrez: 6 8 2021
pubmed: 7 8 2021
medline: 7 8 2021
Statut: epublish

Résumé

This work describes the development of sulfated cellulose (SC) polymer and explores its potential as an electrolyte-membrane for direct methanol fuel cells (DMFC). The fabrication of our membranes was initiated by the preparation of the novel sulfated cellulose solution via controlled acid hydrolysis of microcrystalline cellulose (MCC). Ion-conductive crosslinked SC membranes were prepared following a chemical crosslinking reaction. SC solution was chemically crosslinked with glutaraldehyde (GA) and cured at 30 °C to produce the aforementioned membranes. Effects of GA concentration on methanol permeability, proton conductivity, water uptake and thermal stabilities were investigated. The crosslinking reaction is confirmed by FTIR technique where a bond between the primary OH groups of cellulose and the GA aldehyde groups was achieved, leading to the increased hydrophobic backbone domains in the membrane. The results show that the time of crosslinking reaction highly affects the proton conduction and methanol permeability. The proton conductivity and methanol crossover (3M) of our GA crosslinked SC membranes are 3.7 × 10

Identifiants

pubmed: 34357189
pii: membranes11070539
doi: 10.3390/membranes11070539
pmc: PMC8305687
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

ACS Nano. 2011 Jun 28;5(6):5167-74
pubmed: 21534602
Chem Rev. 2004 Oct;104(10):4535-85
pubmed: 15669162
ACS Appl Mater Interfaces. 2017 May 3;9(17):14791-14800
pubmed: 28414418
Adv Mater. 2018 Jun;30(25):e1707146
pubmed: 29707857
Biomacromolecules. 2004 Sep-Oct;5(5):1671-7
pubmed: 15360274
Carbohydr Polym. 2021 May 15;260:117817
pubmed: 33712161
Biotechniques. 2004 Nov;37(5):790-6, 798-802
pubmed: 15560135
ACS Appl Mater Interfaces. 2018 Mar 7;10(9):7963-7973
pubmed: 29439561
Carbohydr Polym. 2013 Jun 5;95(1):332-7
pubmed: 23618277
Polymers (Basel). 2017 Oct 18;9(10):
pubmed: 30965828
Nanomaterials (Basel). 2020 Aug 29;10(9):
pubmed: 32872554
Appl Biochem Biotechnol. 2003 Spring;105 -108:505-14
pubmed: 12721431
Membranes (Basel). 2015 Nov 24;5(4):793-809
pubmed: 26610582
Carbohydr Polym. 2020 Nov 1;247:116683
pubmed: 32829811
Chem Commun (Camb). 2015 Apr 18;51(30):6556-9
pubmed: 25767828
Chem Rev. 2017 Feb 8;117(3):987-1104
pubmed: 28112903
Carbohydr Polym. 2021 Mar 1;255:117353
pubmed: 33436193
Carbohydr Res. 2010 Sep 23;345(14):2060-6
pubmed: 20705283
ChemSusChem. 2016 Oct 20;9(20):2908-2911
pubmed: 27572738
Phys Chem Chem Phys. 2018 Nov 14;20(44):28287-28299
pubmed: 30398493
J Phys Chem A. 2011 Dec 15;115(49):14191-202
pubmed: 22023599
Membranes (Basel). 2017 Jan 17;7(1):
pubmed: 28106711

Auteurs

Jamaliah Aburabie (J)

NYUAD Water Research Center, Department of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates.

Boor Lalia (B)

NYUAD Water Research Center, Department of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates.

Raed Hashaikeh (R)

NYUAD Water Research Center, Department of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates.

Classifications MeSH