Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery.
Brain metastases
Radiation effects
Radiosurgery
Tumor biomarker
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
31
03
2021
accepted:
06
07
2021
revised:
22
06
2021
pubmed:
7
8
2021
medline:
15
12
2021
entrez:
6
8
2021
Statut:
ppublish
Résumé
The identification of viable tumor after stereotactic radiosurgery (SRS) is important for future targeted therapy. This study aimed to determine whether tumor habitat on structural and physiologic MRI can distinguish viable tumor from radiation necrosis of brain metastases after SRS. Multiparametric contrast-enhanced T1- and T2-weighted imaging, apparent diffusion coefficient (ADC), and cerebral blood volume (CBV) were obtained from 52 patients with 69 metastases, showing enlarging enhancing masses after SRS. Voxel-wise clustering identified three structural MRI habitats (enhancing, solid low-enhancing, and nonviable) and three physiologic MRI habitats (hypervascular cellular, hypovascular cellular, and nonviable). Habitat-based predictors for viable tumor or radiation necrosis were identified by logistic regression. Performance was validated using the area under the curve (AUC) of the receiver operating characteristics curve in an independent dataset with 24 patients. None of the physiologic MRI habitats was indicative of viable tumor. Viable tumor was predicted by a high-volume fraction of solid low-enhancing habitat (low T2-weighted and low CE-T1-weighted values; odds ratio [OR] 1.74, p <.001) and a low-volume fraction of nonviable tissue habitat (high T2-weighted and low CE-T1-weighted values; OR 0.55, p <.001). Combined structural MRI habitats yielded good discriminatory ability in both development (AUC 0.85, 95% confidence interval [CI]: 0.77-0.94) and validation sets (AUC 0.86, 95% CI:0.70-0.99), outperforming single ADC (AUC 0.64) and CBV (AUC 0.58) values. The site of progression matched with the solid low-enhancing habitat (72%, 8/11). Solid low-enhancing and nonviable tissue habitats on structural MRI can help to localize viable tumor in patients with brain metastases after SRS. • Structural MRI habitats helped to differentiate viable tumor from radiation necrosis. • Solid low-enhancing habitat was most helpful to find viable tumor. • Providing spatial information, the site of progression matched with solid low-enhancing habitat.
Identifiants
pubmed: 34357451
doi: 10.1007/s00330-021-08204-1
pii: 10.1007/s00330-021-08204-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
497-507Subventions
Organisme : National Research Foundation of Korea
ID : NRF-2020R1A2B5B01001707
Organisme : National Research Foundation of Korea
ID : NRF-2020R1A2C4001748
Informations de copyright
© 2021. European Society of Radiology.
Références
Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363:1665–1672
doi: 10.1016/S0140-6736(04)16250-8
Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491
Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL (2011) A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol 32:1885–1892
doi: 10.3174/ajnr.A2668
Di Chiro G, Oldfield E, Wright DC et al (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150:189–197
Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation induced CNS toxicity--molecular and cellular mechanisms. Br J Cancer 85:1233–1239
doi: 10.1054/bjoc.2001.2100
Yoshii Y (2008) Pathological review of late cerebral radionecrosis. Brain Tumor Pathol 25:51–58
doi: 10.1007/s10014-008-0233-9
Rahmathulla G, Marko NF, Weil RJ (2013) Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 20:485–502
doi: 10.1016/j.jocn.2012.09.011
Zeng YD, Liao H, Qin T et al (2015) Blood-brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget 6:8366–8376
doi: 10.18632/oncotarget.3187
Alic L, Niessen WJ, Veenland JF (2014) Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS One 9:e110300
doi: 10.1371/journal.pone.0110300
Just N (2014) Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer 111:2205–2213
doi: 10.1038/bjc.2014.512
O'Connor JPB, Rose CJ, Waterton JC, Carano RAD, Parker GJM, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–257
doi: 10.1158/1078-0432.CCR-14-0990
Lee J, Narang S, Martinez J, Rao G, Rao A (2015) Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme. PLoS One 10:e0136557
doi: 10.1371/journal.pone.0136557
Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892
doi: 10.1109/TPAMI.2002.1017616
Vannier MW, Butterfield RL, Jordan D, Murphy WA, Levitt RG, Gado M (1985) Multispectral analysis of magnetic-resonance images. Radiology 154:221–224
doi: 10.1148/radiology.154.1.3964938
Gaustad JV, Benjaminsen IC, Graff BA, Brurberg KG, Ruud EBM, Rofstad EK (2005) Intratumor heterogeneity in blood perfusion in orthotopic human melanoma xenografts assessed by dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 21:792–800
doi: 10.1002/jmri.20321
Checkley D, Tessier JJ, Kendrew J, Waterton JC, Wedge SR (2003) Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours. Br J Cancer 89:1889–1895
doi: 10.1038/sj.bjc.6601386
Miller JA, Bennett EE, Xiao R et al (2016) Association between radiation necrosis and tumor biology after stereotactic radiosurgery for brain metastasis. Int J Radiat Oncol Biol Phys 96:1060–1069
doi: 10.1016/j.ijrobp.2016.08.039
Lin NU, Lee EQ, Aoyama H et al (2015) Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 16:e270–e278
doi: 10.1016/S1470-2045(15)70057-4
Shah R, Vattoth S, Jacob R et al (2012) Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 32:1343–1359
doi: 10.1148/rg.325125002
Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495
doi: 10.1016/j.ijrobp.2009.12.061
Reinhold JC, Dewey BE, Carass A, Prince JL (2019) Evaluating the impact of intensity normalization on MR image synthesis. Proc SPIE Int Soc Opt Eng 10949:109493H
pubmed: 31551645
pmcid: 6758567
Jain R (2011) Perfusion CT imaging of brain tumors: an overview. AJNR Am J Neuroradiol 32:1570–1577
Gull SF (1988) Bayesian inductive inference and maximum entropy. In: Erickson GJ, Smith CR (eds) Maximum-entropy and Bayesian methods in science and engineering: foundations. Springer Netherlands, Dordrecht, pp 53–74
doi: 10.1007/978-94-009-3049-0_4
Genders TS, Spronk S, Stijnen T, Steyerberg EW, Lesaffre E, Hunink MG (2012) Methods for calculating sensitivity and specificity of clustered data: a tutorial. Radiology 265:910–916
doi: 10.1148/radiol.12120509
McCulloch CE, Neuhaus JM (2014) Generalized linear mixed models. Statistics Reference Online, Wiley StatsRef
Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med 13:1
doi: 10.1186/s12916-014-0241-z
Lohmann P, Kocher M, Ceccon G et al (2018) Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin 20:537–542
doi: 10.1016/j.nicl.2018.08.024
Karami E, Soliman H, Ruschin M et al (2019) Quantitative MRI biomarkers of stereotactic radiotherapy outcome in brain metastasis. Sci Rep 9:19830
doi: 10.1038/s41598-019-56185-5
Huang CY, Lee CC, Yang HC et al (2020) Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery. J Neurooncol 146:439–449
doi: 10.1007/s11060-019-03343-4
Dequesada IM, Quisling RG, Yachnis A, Friedman WA (2008) Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery 63:898–903 discussion 904
doi: 10.1227/01.NEU.0000333263.31870.31
Kano H, Kondziolka D, Lobato-Polo J, Zorro O, Flickinger JC, Lunsford LD (2010) T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery 66:486–491 discussion 491-482
doi: 10.1227/01.NEU.0000360391.35749.A5
Stockham AL, Tievsky AL, Koyfman SA et al (2012) Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neurooncol 109:149–158
doi: 10.1007/s11060-012-0881-9
Ahn SJ, Park M, Bang S et al (2018) Apparent diffusion coefficient histogram in breast cancer brain metastases may predict their biological subtype and progression. Sci Rep 8:9947
doi: 10.1038/s41598-018-28315-y
Jung WS, Park CH, Hong CK, Suh SH, Ahn SJ (2018) Diffusion-weighted imaging of brain metastasis from lung cancer: correlation of MRI parameters with the histologic type and gene mutation status. AJNR Am J Neuroradiol 39:273–279
doi: 10.3174/ajnr.A5516
Knitter JR, Erly WK, Stea BD et al (2018) Interval change in diffusion and perfusion MRI parameters for the assessment of pseudoprogression in cerebral metastases treated with stereotactic radiation. AJR Am J Roentgenol 211:168–175
doi: 10.2214/AJR.17.18890
Huang C-F, Chou H-H, Tu H-T, Yang M-S, Lee J-K, Lin L-Y (2008) Diffusion magnetic resonance imaging as an evaluation of the response of brain metastases treated by stereotactic radiosurgery. Surg Neurol 69:62–68
doi: 10.1016/j.surneu.2007.02.021
Lee CC, Wintermark M, Xu Z, Yen CP, Schlesinger D, Sheehan JP (2014) Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to gamma knife radiosurgery. J Neurooncol 118:351–361
doi: 10.1007/s11060-014-1439-9
Hoefnagels FW, Lagerwaard FJ, Sanchez E et al (2009) Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol 256:878
doi: 10.1007/s00415-009-5034-5
Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372
doi: 10.3174/ajnr.A1362
Murphy ES, Xie H, Merchant TE, Yu JS, Chao ST, Suh JH (2015) Review of cranial radiotherapy-induced vasculopathy. J Neurooncol 122:421–429
doi: 10.1007/s11060-015-1732-2
Cristante E, McArthur S, Mauro C et al (2013) Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A 110:832–841
doi: 10.1073/pnas.1209362110