Learning by Doing: The Use of Distance, Corners and Length in Rewarded Geometric Tasks by Zebrafish (
environmental geometry
geometric components
navigation
spatial learning
zebrafish
Journal
Animals : an open access journal from MDPI
ISSN: 2076-2615
Titre abrégé: Animals (Basel)
Pays: Switzerland
ID NLM: 101635614
Informations de publication
Date de publication:
05 Jul 2021
05 Jul 2021
Historique:
received:
02
06
2021
revised:
24
06
2021
accepted:
30
06
2021
entrez:
7
8
2021
pubmed:
8
8
2021
medline:
8
8
2021
Statut:
epublish
Résumé
Zebrafish spontaneously use distance and directional relationships among three-dimensional extended surfaces to reorient within a rectangular arena. However, they fail to take advantage of either an array of freestanding corners or an array of unequal-length surfaces to search for a no-longer-present goal under a spontaneous cued memory procedure, being unable to use the information supplied by corners and length without some kind of rewarded training. The present study aimed to tease apart the geometric components characterizing a rectangular enclosure under a procedure recruiting the reference memory, thus training zebrafish in fragmented layouts that provided differences in surface distance, corners, and length. Results showed that fish, besides the distance, easily learned to use both corners and length if subjected to a rewarded exit task over time, suggesting that they can represent all the geometrically informative parts of a rectangular arena when consistently exposed to them. Altogether, these findings highlight crucially important issues apropos the employment of different behavioral protocols (spontaneous choice versus training over time) to assess spatial abilities of zebrafish, further paving the way to deepen the role of visual and nonvisual encodings of isolated geometric components in relation to macrostructural boundaries.
Identifiants
pubmed: 34359129
pii: ani11072001
doi: 10.3390/ani11072001
pmc: PMC8300093
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Behav Brain Res. 2019 Sep 16;370:111924
pubmed: 31028766
Annu Rev Neurosci. 2017 Jul 25;40:125-147
pubmed: 28375767
Cognition. 1986 Jul;23(2):149-78
pubmed: 3742991
Nat Rev Genet. 2002 Sep;3(9):717-24
pubmed: 12209146
Cognition. 2005 Sep;97(2):121-33
pubmed: 16226559
Zebrafish. 2006;3(2):157-71
pubmed: 18248258
PLoS One. 2020 May 14;15(5):e0233157
pubmed: 32407367
J Comp Psychol. 2015 May;129(2):189-197
pubmed: 25984938
Cogn Psychol. 2010 Sep;61(2):152-76
pubmed: 20570252
J Exp Psychol Anim Behav Process. 2003 Jul;29(3):199-210
pubmed: 12884679
Behav Processes. 2015 Oct;119:116-22
pubmed: 26238575
Zebrafish. 2020 Apr;17(2):131-138
pubmed: 32182193
Anim Cogn. 2008 Jan;11(1):161-6
pubmed: 17636365
PLoS One. 2020 Mar 3;15(3):e0229608
pubmed: 32126075
Biol Lett. 2012 Aug 23;8(4):492-4
pubmed: 22417791
J Comp Psychol. 2011 Aug;125(3):273-7
pubmed: 21842982
Histochem Cell Biol. 2020 Nov;154(5):495-505
pubmed: 32435910
Behav Brain Res. 2005 Aug 30;163(1):122-7
pubmed: 15941602
Trends Cogn Sci. 2008 Sep;12(9):355-61
pubmed: 18684662
Trends Pharmacol Sci. 2014 Feb;35(2):63-75
pubmed: 24412421
Psychon Bull Rev. 2011 Feb;18(1):192-8
pubmed: 21327347
Behav Brain Res. 2019 Feb 1;359:190-196
pubmed: 30412739
Hum Evol. 2009 Jan 1;23(3):213-248
pubmed: 21359132
Nature. 1996 May 30;381(6581):425-8
pubmed: 8632799
Cognition. 2001 Sep;81(2):119-48
pubmed: 11376639
J Exp Biol. 2010 Sep;213(Pt 17):2987-96
pubmed: 20709927
Neurosci Biobehav Rev. 2012 Feb;36(2):799-824
pubmed: 22206900
J Exp Psychol Anim Behav Process. 2011 Oct;37(4):420-35
pubmed: 21604907
Annu Rev Psychol. 2013;64:169-200
pubmed: 22804775
Biochim Biophys Acta. 2011 Mar;1812(3):335-45
pubmed: 20887784
Behav Brain Res. 2008 May 16;189(1):216-9
pubmed: 18243353
Science. 2008 Dec 19;322(5909):1865-8
pubmed: 19095945
Anim Behav. 2000 Mar;59(3):613-621
pubmed: 10715184
J Comp Psychol. 2010 May;124(2):147-58
pubmed: 20476814
J Anat. 2000 May;196 ( Pt 4):501-17
pubmed: 10923983
Proc Biol Sci. 2012 Jun 7;279(1736):2228-36
pubmed: 22237909
Trends Biotechnol. 2006 Jan;24(1):15-21
pubmed: 16309768
Behav Brain Res. 2004 Nov 5;155(1):85-96
pubmed: 15325782
Front Physiol. 2016 Apr 29;7:153
pubmed: 27199768
Behav Brain Res. 2013 Nov 15;257:224-9
pubmed: 24084583
Front Physiol. 2018 May 24;9:614
pubmed: 29881359
Dev Sci. 2008 Sep;11(5):743-9
pubmed: 18801130
Integr Zool. 2009 Mar;4(1):13-25
pubmed: 21392273
Sci Rep. 2018 Dec 6;8(1):17698
pubmed: 30523284
Anim Cogn. 2012 Sep;15(5):861-70
pubmed: 22610461
Psychol Sci. 2007 Jul;18(7):569-73
pubmed: 17614863
Sci Rep. 2020 May 15;10(1):8020
pubmed: 32415246
Cognition. 2002 Sep;85(2):B51-9
pubmed: 12127704
J Exp Biol. 2013 Oct 1;216(Pt 19):3693-9
pubmed: 23788708
Cognition. 2012 Apr;123(1):144-61
pubmed: 22257573
Anim Cogn. 2007 Jan;10(1):47-54
pubmed: 16794851
Genome Res. 2000 Dec;10(12):1890-902
pubmed: 11116085
Behav Processes. 2002 Jun 28;58(3):125-132
pubmed: 12044689
J Cogn Neurosci. 2004 Apr;16(3):390-400
pubmed: 15072675
Exp Brain Res. 2010 Oct;206(2):179-88
pubmed: 20614214
Behav Brain Res. 2010 Feb 11;207(1):99-104
pubmed: 19800919
PLoS One. 2012;7(5):e37449
pubmed: 22624033
PLoS One. 2013 Jun 26;8(6):e66039
pubmed: 23840396
Curr Biol. 2009 Jan 13;19(1):61-6
pubmed: 19119010
J Comp Psychol. 2004 Jun;118(2):206-16
pubmed: 15250808
J Comp Psychol. 2013 Aug;127(3):312-8
pubmed: 23815593
Cogn Sci. 2010 May 1;34(5):863-884
pubmed: 20625445
Eur J Neurosci. 2006 Nov;24(10):2870-8
pubmed: 17156211
Psychon Bull Rev. 2005 Feb;12(1):1-23
pubmed: 15945200