Potential of Immunotherapies in Treating Hematological Cancer-Infection Comorbidities-A Mathematical Modelling Approach.

CAR T-cell therapy bi-stability cancer-infection comorbidity cancer-infection-immune coupling dormant state immunotherapy in silico investigation mathematical modelling the three E’s of immunoediting

Journal

Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829

Informations de publication

Date de publication:
27 Jul 2021
Historique:
received: 19 06 2021
revised: 08 07 2021
accepted: 23 07 2021
entrez: 7 8 2021
pubmed: 8 8 2021
medline: 8 8 2021
Statut: epublish

Résumé

The immune system attacks threats like an emerging cancer or infections like COVID-19 but it also plays a role in dealing with autoimmune disease, e.g., inflammatory bowel diseases, and aging. Malignant cells may tend to be eradicated, to appraoch a dormant state or escape the immune system resulting in uncontrolled growth leading to cancer progression. If the immune system is busy fighting a cancer, a severe infection on top of it may compromise the immunoediting and the comorbidity may be too taxing for the immune system to control. A novel mechanism based computational model coupling a cancer-infection development to the adaptive immune system is presented and analyzed. The model maps the outcome to the underlying physiological mechanisms and agree with numerous evidence based medical observations. Progression of a cancer and the effect of treatments depend on the cancer size, the level of infection, and on the efficiency of the adaptive immune system. The model exhibits bi-stability, i.e., virtual patient trajectories gravitate towards one of two stable steady states: a dormant state or a full-blown cancer-infection disease state. An infectious threshold curve exists and if infection exceed this separatrix for sufficiently long time the cancer escapes. Thus, early treatment is vital for remission and severe infections may instigate cancer progression. CAR T-cell Immunotherapy may sufficiently control cancer progression back into a dormant state but the therapy significantly gains efficiency in combination with antibiotics or immunomodulation.

Sections du résumé

BACKGROUND BACKGROUND
The immune system attacks threats like an emerging cancer or infections like COVID-19 but it also plays a role in dealing with autoimmune disease, e.g., inflammatory bowel diseases, and aging. Malignant cells may tend to be eradicated, to appraoch a dormant state or escape the immune system resulting in uncontrolled growth leading to cancer progression. If the immune system is busy fighting a cancer, a severe infection on top of it may compromise the immunoediting and the comorbidity may be too taxing for the immune system to control.
METHOD METHODS
A novel mechanism based computational model coupling a cancer-infection development to the adaptive immune system is presented and analyzed. The model maps the outcome to the underlying physiological mechanisms and agree with numerous evidence based medical observations.
RESULTS AND CONCLUSIONS CONCLUSIONS
Progression of a cancer and the effect of treatments depend on the cancer size, the level of infection, and on the efficiency of the adaptive immune system. The model exhibits bi-stability, i.e., virtual patient trajectories gravitate towards one of two stable steady states: a dormant state or a full-blown cancer-infection disease state. An infectious threshold curve exists and if infection exceed this separatrix for sufficiently long time the cancer escapes. Thus, early treatment is vital for remission and severe infections may instigate cancer progression. CAR T-cell Immunotherapy may sufficiently control cancer progression back into a dormant state but the therapy significantly gains efficiency in combination with antibiotics or immunomodulation.

Identifiants

pubmed: 34359690
pii: cancers13153789
doi: 10.3390/cancers13153789
pmc: PMC8345105
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

PLoS One. 2017 Aug 31;12(8):e0183620
pubmed: 28859112
Science. 1996 Jul 12;273(5272):242-5
pubmed: 8662508
Front Immunol. 2017 Dec 13;8:1809
pubmed: 29326701
Nature. 2008 Jul 24;454(7203):436-44
pubmed: 18650914
Immunity. 2013 Jul 25;39(1):11-26
pubmed: 23890060
J Virol. 2010 Jun;84(12):6096-102
pubmed: 20357090
Cancers (Basel). 2020 Jul 02;12(7):
pubmed: 32630667
Science. 2011 Mar 25;331(6024):1565-70
pubmed: 21436444
Semin Oncol Nurs. 2019 Oct;35(5):150923
pubmed: 31526550
Ann Inst Pasteur Immunol. 1988 Jul-Aug;139(4):361-81
pubmed: 3166753
Blood. 2020 Jul 9;136(2):153-154
pubmed: 32645167
Bull Math Biol. 2017 Jun;79(6):1426-1448
pubmed: 28585066
Leukemia. 2017 Dec;31(12):2587-2593
pubmed: 28490811
Infect Genet Evol. 2020 Aug;82:104306
pubmed: 32278147
J Math Biol. 2010 Mar;60(3):347-86
pubmed: 19347340
Nat Immunol. 2002 Nov;3(11):991-8
pubmed: 12407406
Immunobiology. 1988 Dec;178(3):203-14
pubmed: 3265930
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15572-7
pubmed: 12434018
J Exp Med. 2001 Nov 5;194(9):1277-87
pubmed: 11696593
Nature. 1978 Apr 13;272(5654):624-6
pubmed: 306069
World J Gastrointest Surg. 2012 Mar 27;4(3):62-72
pubmed: 22530080
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16616-21
pubmed: 19805346
J Exp Med. 2014 Feb 10;211(2):245-62
pubmed: 24493802
J Theor Biol. 2019 Mar 21;465:90-108
pubmed: 30615883
Bull Math Biol. 1994 Mar;56(2):295-321
pubmed: 8186756
Hemasphere. 2020 May 21;4(3):e371
pubmed: 32647796
Stem Cells. 2006 Dec;24(12):2603-10
pubmed: 16931775
Comput Math Methods Med. 2019 Oct 8;2019:4079298
pubmed: 31687042
Math Biosci Eng. 2020 Dec 4;18(1):373-385
pubmed: 33525097
Hemasphere. 2020 Jun 08;4(3):e407
pubmed: 32647805
Blood. 2011 Dec 8;118(24):6392-8
pubmed: 21860020
J Immunol. 1986 Aug 15;137(4):1376-82
pubmed: 3525678
Nat Rev Immunol. 2012 Nov;12(11):749-61
pubmed: 23080391
Blood. 2012 Feb 16;119(7):1702-12
pubmed: 22207739
Cancer Res. 2005 Sep 1;65(17):7950-8
pubmed: 16140967
Immunity. 2014 Nov 20;41(5):853-65
pubmed: 25517617
Mediators Inflamm. 2015;2015:606819
pubmed: 26538830
Nat Med. 2019 Dec;25(12):1822-1832
pubmed: 31806905
Cancer Med. 2020 Mar;9(6):2039-2051
pubmed: 31991066
Cancers (Basel). 2020 Jul 30;12(8):
pubmed: 32751766
Postgrad Med J. 2002 Feb;78(916):63-70
pubmed: 11807185
Carcinogenesis. 2009 Jul;30(7):1073-81
pubmed: 19468060
Cell. 2016 Mar 10;164(6):1233-1247
pubmed: 26967289
Math Biosci. 2007 Nov;210(1):143-56
pubmed: 17599363
Lancet Neurol. 2013 May;12(5):498-513
pubmed: 23602163
Math Biosci. 2020 Aug;326:108372
pubmed: 32442449
J Invest Dermatol. 2020 Apr;140(4):745-747
pubmed: 32200878
J Clin Pharmacol. 2020 Oct;60 Suppl 1:S147-S159
pubmed: 33205434
Math Med Biol. 2020 Dec 15;37(4):491-514
pubmed: 32430508
Cell Immunol. 2018 May;327:54-61
pubmed: 29454648
Cancer Metab. 2015 Dec 22;3:14
pubmed: 26702357
Cancers (Basel). 2021 Feb 09;13(4):
pubmed: 33572301
Immun Ageing. 2018 Jan 19;15:1
pubmed: 29387133
PLoS One. 2013 Aug 19;8(8):e71128
pubmed: 23990931
Mol Immunol. 2015 Feb;63(2):268-78
pubmed: 25089028
Bull Math Biol. 2011 Jan;73(1):2-32
pubmed: 20225137
Cell. 2000 Jan 7;100(1):57-70
pubmed: 10647931
J Med Signals Sens. 2019 Jan-Mar;9(1):15-23
pubmed: 30967986
Nat Rev Immunol. 2007 Jul;7(7):532-42
pubmed: 17589543
Expert Rev Anti Infect Ther. 2012 Jun;10(6):701-6
pubmed: 22734959
Cells. 2020 Jun 26;9(6):
pubmed: 32604862
Commun Nonlinear Sci Numer Simul. 2021 Apr;95:105584
pubmed: 33162723
Annu Rev Immunol. 2004;22:329-60
pubmed: 15032581
Mediators Inflamm. 2015;2015:102476
pubmed: 26604428
Hum Vaccin Immunother. 2019;15(5):1111-1122
pubmed: 30888929
Math Med Biol. 2004 Mar;21(1):1-34
pubmed: 15065736
Comput Math Methods Med. 2020 Feb 19;2020:7187602
pubmed: 32148558
Viruses. 2012 Dec;4(12):3389-419
pubmed: 23342365
J Theor Biol. 1994 Oct 21;170(4):367-91
pubmed: 7996863
Mediators Inflamm. 2015;2015:415024
pubmed: 26640324

Auteurs

Johnny T Ottesen (JT)

Center for Mathematical Modeling-Human Health and Disease (COMMAND), Roskilde University, 4000 Roskilde, Denmark.
IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark.

Morten Andersen (M)

Center for Mathematical Modeling-Human Health and Disease (COMMAND), Roskilde University, 4000 Roskilde, Denmark.
IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark.

Classifications MeSH