Assessing the Use of the sGC Stimulator BAY-747, as a Potential Treatment for Duchenne Muscular Dystrophy.
duchenne muscular dystrophy
fibrosis
inflammation
mdx/mTRG2 mice
sGC stimulator
skeletal muscle damage
skeletal muscle function
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
27 Jul 2021
27 Jul 2021
Historique:
received:
29
04
2021
revised:
09
07
2021
accepted:
17
07
2021
entrez:
7
8
2021
pubmed:
8
8
2021
medline:
9
9
2021
Statut:
epublish
Résumé
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder, affecting one in 3500 to 5000 boys worldwide. The NO-sGC-cGMP pathway plays an important role in skeletal muscle function, primarily by improving blood flow and oxygen supply to the muscles during exercise. In fact, PDE5 inhibitors have previously been investigated as a potential therapy for DMD, however, a large-scale Phase III clinical trial did not meet its primary endpoint. Since the efficacy of PDE5i is dependent on sufficient endogenous NO production, which might be impaired in DMD, we investigated if NO-independent sGC stimulators, could have therapeutic benefits in a mouse model of DMD. Male mdx/mTR
Identifiants
pubmed: 34360780
pii: ijms22158016
doi: 10.3390/ijms22158016
pmc: PMC8347633
pii:
doi:
Substances chimiques
Enzyme Activators
0
Soluble Guanylyl Cyclase
EC 4.6.1.2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Neuromuscul Disord. 2018 Nov;28(11):914-926
pubmed: 30352768
Antioxid Redox Signal. 2017 Jun 10;26(17):966-985
pubmed: 27393340
NPJ Regen Med. 2018 Feb 16;3:4
pubmed: 29479480
Int J Mol Sci. 2019 Nov 30;20(23):
pubmed: 31801292
Biochem Biophys Res Commun. 2014 Jan 24;443(4):1195-9
pubmed: 24380860
Handb Exp Pharmacol. 2013;218:279-313
pubmed: 24092345
PLoS One. 2007 Aug 29;2(8):e806
pubmed: 17726536
Phys Ther. 2001 Nov;81(11):1810-6
pubmed: 11694174
Neurology. 2014 Jun 10;82(23):2085-91
pubmed: 24808022
Lancet Neurol. 2018 Mar;17(3):251-267
pubmed: 29395989
Br J Pharmacol. 2002 Jul;136(5):773-83
pubmed: 12086987
Circulation. 2011 Aug 2;124(5):582-8
pubmed: 21768542
J Am Heart Assoc. 2019 Nov 5;8(21):e011902
pubmed: 31662020
ChemMedChem. 2009 May;4(5):853-65
pubmed: 19263460
Cell. 2010 Dec 23;143(7):1059-71
pubmed: 21145579
Annu Rev Nutr. 2018 Aug 21;38:303-328
pubmed: 30130468
Genes (Basel). 2020 Jul 23;11(8):
pubmed: 32717791
Sci Transl Med. 2012 Nov 28;4(162):162ra155
pubmed: 23197572
J Pathol. 2012 Sep;228(1):77-87
pubmed: 22653783
J Physiol. 2014 Nov 1;592(21):4627-38
pubmed: 25194047
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13818-23
pubmed: 11087833
J Am Heart Assoc. 2016 Aug 09;5(8):
pubmed: 27506543
Nat Cell Biol. 2013 Aug;15(8):895-904
pubmed: 23831727
Lancet Neurol. 2018 May;17(5):445-455
pubmed: 29398641
J Med Chem. 2021 May 13;64(9):5323-5344
pubmed: 33872507
Br Med Bull. 2007;81-82:209-30
pubmed: 17569697
Lancet Neurol. 2018 Apr;17(4):347-361
pubmed: 29395990
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19079-83
pubmed: 20956307
FEBS Lett. 2014 Sep 17;588(18):3469-74
pubmed: 25128584
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
Neurology. 2017 Oct 24;89(17):1811-1820
pubmed: 28972192
Nature. 2001 Mar 8;410(6825):212-5
pubmed: 11242081
Pharmacol Rep. 2020 Oct;72(5):1227-1263
pubmed: 32691346
J Med Chem. 2017 Jun 22;60(12):5146-5161
pubmed: 28557445
Nature. 2008 Nov 27;456(7221):511-5
pubmed: 18953332