Support vector machine and deep-learning object detection for localisation of hard exudates.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 08 2021
06 08 2021
Historique:
received:
15
11
2020
accepted:
26
07
2021
entrez:
7
8
2021
pubmed:
8
8
2021
medline:
8
8
2021
Statut:
epublish
Résumé
Hard exudates are one of the main clinical findings in the retinal images of patients with diabetic retinopathy. Detecting them early significantly impacts the treatment of underlying diseases; therefore, there is a need for automated systems with high reliability. We propose a novel method for identifying and localising hard exudates in retinal images. To achieve fast image pre-scanning, a support vector machine (SVM) classifier was combined with a faster region-based convolutional neural network (faster R-CNN) object detector for the localisation of exudates. Rapid pre-scanning filtered out exudate-free samples using a feature vector extracted from the pre-trained ResNet-50 network. Subsequently, the remaining samples were processed using a faster R-CNN detector for detailed analysis. When evaluating all the exudates as individual objects, the SVM classifier reduced the false positive rate by 29.7% and marginally increased the false negative rate by 16.2%. When evaluating all the images, we recorded a 50% reduction in the false positive rate, without any decrease in the number of false negatives. The interim results suggested that pre-scanning the samples using the SVM prior to implementing the deep-network object detector could simultaneously improve and speed up the current hard exudates detection method, especially when there is paucity of training data.
Identifiants
pubmed: 34362989
doi: 10.1038/s41598-021-95519-0
pii: 10.1038/s41598-021-95519-0
pmc: PMC8346563
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16045Informations de copyright
© 2021. The Author(s).
Références
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149
pubmed: 27295650
Comput Methods Programs Biomed. 2016 Dec;137:281-292
pubmed: 28110732
Comput Biol Med. 2019 Jan;104:62-69
pubmed: 30439600
Nat Biomed Eng. 2020 Jan;4(1):18-27
pubmed: 31873211
PLoS One. 2014 Jun 02;9(6):e96814
pubmed: 24886780
Diabetes Care. 2012 Mar;35(3):556-64
pubmed: 22301125
Front Comput Neurosci. 2019 Dec 11;13:83
pubmed: 31920608
Med Image Anal. 2014 Oct;18(7):1026-43
pubmed: 24972380
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):590-596
pubmed: 29372258
Nat Biomed Eng. 2018 Mar;2(3):158-164
pubmed: 31015713
Acta Diabetol. 2020 Jul;57(7):785-798
pubmed: 32222818
Invest Ophthalmol Vis Sci. 2013 Aug 15;54(8):5544-50
pubmed: 23847305
BMC Ophthalmol. 2018 Nov 6;18(1):288
pubmed: 30400869
Ont Health Technol Assess Ser. 2009;9(13):1-22
pubmed: 23074517
Med Image Anal. 2012 Jan;16(1):216-26
pubmed: 21865074
Lancet Digit Health. 2020 May;2(5):e240-e249
pubmed: 33328056