Support vector machine and deep-learning object detection for localisation of hard exudates.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
06 08 2021
Historique:
received: 15 11 2020
accepted: 26 07 2021
entrez: 7 8 2021
pubmed: 8 8 2021
medline: 8 8 2021
Statut: epublish

Résumé

Hard exudates are one of the main clinical findings in the retinal images of patients with diabetic retinopathy. Detecting them early significantly impacts the treatment of underlying diseases; therefore, there is a need for automated systems with high reliability. We propose a novel method for identifying and localising hard exudates in retinal images. To achieve fast image pre-scanning, a support vector machine (SVM) classifier was combined with a faster region-based convolutional neural network (faster R-CNN) object detector for the localisation of exudates. Rapid pre-scanning filtered out exudate-free samples using a feature vector extracted from the pre-trained ResNet-50 network. Subsequently, the remaining samples were processed using a faster R-CNN detector for detailed analysis. When evaluating all the exudates as individual objects, the SVM classifier reduced the false positive rate by 29.7% and marginally increased the false negative rate by 16.2%. When evaluating all the images, we recorded a 50% reduction in the false positive rate, without any decrease in the number of false negatives. The interim results suggested that pre-scanning the samples using the SVM prior to implementing the deep-network object detector could simultaneously improve and speed up the current hard exudates detection method, especially when there is paucity of training data.

Identifiants

pubmed: 34362989
doi: 10.1038/s41598-021-95519-0
pii: 10.1038/s41598-021-95519-0
pmc: PMC8346563
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

16045

Informations de copyright

© 2021. The Author(s).

Références

IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149
pubmed: 27295650
Comput Methods Programs Biomed. 2016 Dec;137:281-292
pubmed: 28110732
Comput Biol Med. 2019 Jan;104:62-69
pubmed: 30439600
Nat Biomed Eng. 2020 Jan;4(1):18-27
pubmed: 31873211
PLoS One. 2014 Jun 02;9(6):e96814
pubmed: 24886780
Diabetes Care. 2012 Mar;35(3):556-64
pubmed: 22301125
Front Comput Neurosci. 2019 Dec 11;13:83
pubmed: 31920608
Med Image Anal. 2014 Oct;18(7):1026-43
pubmed: 24972380
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):590-596
pubmed: 29372258
Nat Biomed Eng. 2018 Mar;2(3):158-164
pubmed: 31015713
Acta Diabetol. 2020 Jul;57(7):785-798
pubmed: 32222818
Invest Ophthalmol Vis Sci. 2013 Aug 15;54(8):5544-50
pubmed: 23847305
BMC Ophthalmol. 2018 Nov 6;18(1):288
pubmed: 30400869
Ont Health Technol Assess Ser. 2009;9(13):1-22
pubmed: 23074517
Med Image Anal. 2012 Jan;16(1):216-26
pubmed: 21865074
Lancet Digit Health. 2020 May;2(5):e240-e249
pubmed: 33328056

Auteurs

Veronika Kurilová (V)

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19, Bratislava, Slovakia. veronika.hanuskova@gmail.com.

Jozef Goga (J)

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19, Bratislava, Slovakia.

Miloš Oravec (M)

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19, Bratislava, Slovakia. milos.oravec@stuba.sk.

Jarmila Pavlovičová (J)

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19, Bratislava, Slovakia.

Slavomír Kajan (S)

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19, Bratislava, Slovakia.

Classifications MeSH