Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications.
Central core modification
Fused ring electron acceptors
Optical properties
Quantum simulation
Journal
Journal of molecular modeling
ISSN: 0948-5023
Titre abrégé: J Mol Model
Pays: Germany
ID NLM: 9806569
Informations de publication
Date de publication:
07 Aug 2021
07 Aug 2021
Historique:
received:
06
05
2021
accepted:
30
07
2021
entrez:
7
8
2021
pubmed:
8
8
2021
medline:
8
8
2021
Statut:
epublish
Résumé
Small donor molecules based on fused ring acceptors exhibit encouraging photovoltaic properties and expeditious advancement in organic solar cells. Central core modification of non-fullerene acceptor materials is a favorable methodology to enhance electronic properties and efficiency for OSCs. Herein, four new donor molecules, namely, BDTM1, PYRM2, ANTM3, and NM4 are designed with a strong donor moiety triphenylamine, tetracyanobutadiene as acceptor unit, and thiophene as spacer linked to a modified central core. Geometric parameters, optical, electrical properties, effect of central core modification on tailored molecules BDTM1-NM4 are investigated and compared with reference DPPR. DFT together with TDDFT approaches using MPW1PW91 functional is used to study key parameters like absorption maximum (λ
Identifiants
pubmed: 34363112
doi: 10.1007/s00894-021-04867-1
pii: 10.1007/s00894-021-04867-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
237Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Bull SR (2001) Renewable energy today and tomorrow. Proc IEEE 89(8):1216–1226
doi: 10.1109/5.940290
Alvarez GE, Marcovecchio MG, Aguirre PA (2020) Optimization of the integration among traditional fossil fuels, clean energies, renewable sources, and energy storages: an MILP model for the coupled electric power, hydraulic, and natural gas systems. Comput Ind Eng 139:106141
doi: 10.1016/j.cie.2019.106141
Boyle G (2004) Renewable energy. Oxford University Press ISBN-10: 0199261784. ISBN-13: 9780199261789
Hsieh JS (1986) Solar energy engineering. Englewood Cliffs, ISBN: 0138224463 9780138224462
Adnan M, Lee JK (2020) Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Adv 10(9):5454–5461
doi: 10.1039/C9RA09607H
Monteiro Lunardi M et al (2017) A life cycle assessment of perovskite/silicon tandem solar cells. Prog Photovoltaics Res Appl 25(8):679–695
doi: 10.1002/pip.2877
Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41(11):4245–4272
pubmed: 22453295
doi: 10.1039/c2cs15313k
Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923
pubmed: 19785455
doi: 10.1021/cr900182s
pmcid: 19785455
Yeh N, Yeh P (2013) Organic solar cells: Their developments and potentials. Renew Sustain Energy Rev 21:421–431
doi: 10.1016/j.rser.2012.12.046
Li Z et al (2016) Donor polymer design enables efficient non-fullerene organic solar cells. Nat Commun 7(1):1–9
He Y, Li Y (2011) Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 13(6):1970–1983
pubmed: 21180723
doi: 10.1039/C0CP01178A
Yu G et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791
doi: 10.1126/science.270.5243.1789
Hummelen JC et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60(3):532–538
doi: 10.1021/jo00108a012
Wienk MM et al (2003) Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem 115(29):3493–3497
doi: 10.1002/ange.200351647
Zhan C, Zhang X, Yao J (2015) New advances in non-fullerene acceptor based organic solar cells. RSC Adv 5(113):93002–93026
doi: 10.1039/C5RA17715D
Yao H et al (2017) Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv Mater 29(21):1700254
doi: 10.1002/adma.201700254
Zhang J et al (2018) Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy 3(9):720–731
doi: 10.1038/s41560-018-0181-5
Baran D et al (2017) Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater 16(3):363–369
pubmed: 27869824
doi: 10.1038/nmat4797
pmcid: 27869824
Zhang G et al (2018) Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev 118(7):3447–3507
pubmed: 29557657
doi: 10.1021/acs.chemrev.7b00535
pmcid: 29557657
Liu Q et al (2020) 18% Efficiency organic solar cells. Science Bulletin 65(4):272–275
doi: 10.1016/j.scib.2020.01.001
Shehzad RA et al (2020) Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. Comput Theor Chem 1181:112833
Wang H et al (2019) Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells. JMater Chem A 7(9):4313–4333
doi: 10.1039/C8TA12465E
Huang H et al (2019) Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nat Commun 10(1):1–10
doi: 10.1038/s41467-018-07882-8
Yao H et al (2016) Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv Mater 28(37):8283–8287
pubmed: 27380468
doi: 10.1002/adma.201602642
Skabara PJ, Arlin JB, Geerts YH (2013) Close encounters of the 3D kind–exploiting high dimensionality in molecular semiconductors. Wiley Online Library 25(13):1948–1954
Li C, Wonneberger H (2012) Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Adv Mater 24(5):613–636
pubmed: 22228467
doi: 10.1002/adma.201104447
Frisch MJ et al (2016) Fox, Gaussian, Inc., Wallingford CT
Dennington R, Keith T, and Millam J (2009) Gauss View, Version 5. Semichem Inc., Shawnee Mission
Civalleri B et al (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10(4):405–410
doi: 10.1039/B715018K
Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57
doi: 10.1016/j.cplett.2004.06.011
Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The m PW and m PW1PW models. J Chem Phys 108(2):664–675
doi: 10.1063/1.475428
Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620
pubmed: 18989472
doi: 10.1039/b810189b
pmcid: 18989472
Cossi M et al (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286(3–4):253–260
doi: 10.1016/S0009-2614(98)00106-7
Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187–196
Li R et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463(7279):311–317
pubmed: 20010809
pmcid: 20010809
doi: 10.1038/nature08696
O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem. 29(5):839–845
pubmed: 17849392
doi: 10.1002/jcc.20823
Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592
pubmed: 22162017
doi: 10.1002/jcc.22885
pmcid: 22162017
Tang S, Zhang J (2012) Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo (thienylenevinylene) toward solar cells. J Comput Chem 33(15):1353–1363
pubmed: 22488353
doi: 10.1002/jcc.22966
Afzal Z et al (2020) Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J Mol Model 26:1–17
doi: 10.1007/s00894-020-04386-5
Li S-B et al (2016) Theoretical design and characterization of high-efficiency organic dyes with different electron-withdrawing groups based on C275 toward dye-sensitized solar cells. New J Chem 40(11):9320–9328
doi: 10.1039/C6NJ01731B
Li M et al (2015) Theoretical study of WS-9-based organic sensitizers for unusual Vis/NIR absorption and highly efficient dye-sensitized solar cells. J Phys Chem C 119(18):9782–9790
doi: 10.1021/acs.jpcc.5b03667
Sutradhar T, Misra A (2021) Theoretical study on the nonlinear optical property of boron nitride nanoclusters functionalized by electron donating and electron accepting groups. J Phys Chem A 125(12):2436–2445
pubmed: 33749280
doi: 10.1021/acs.jpca.0c11101
Li H-B et al (2014) Theoretical studies on organic D-π-A sensitizers with planar triphenylamine donor and different π-linkers for dyes-sensitized solar cells. J Mol Model 20(7):1–12
Sutradhar T, Misra A (2020) The role of π-linkers and electron acceptors in tuning the nonlinear optical properties of BODIPY-based zwitterionic molecules. RSC Adv 10(66):40300–40309
doi: 10.1039/D0RA02193H
Ahmed S, Dutta R, Kalita DJ (2019) Strategical designing of diketopyrrolopyrrole-thiophene based donor-acceptor type organic oligomers and study their transport properties: A DFT/TD-DFT perspective. Chem Phys Lett 730:14–25
doi: 10.1016/j.cplett.2019.05.027
Cias P, Slugovc C, Gescheidt G (2011) Hole transport in triphenylamine based OLED devices: from theoretical modeling to properties prediction. J Phys Chem A 115(50):14519–14525
pubmed: 22060634
doi: 10.1021/jp207585j
Sutradhar T, Misra A (2019) Enhancement of nonlinear optical properties of indole based dyes through electron acceptor and π-linker for dye-sensitized solar cell applications. ChemistrySelect 4(13):3697–3705
doi: 10.1002/slct.201803992
Khan MU et al (2018) First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J Phys Chem C 122(7):4009–4018
doi: 10.1021/acs.jpcc.7b12293
Janjua MRSA et al (2021) Theoretical and conceptual framework to design efficient dye-sensitized solar cells (DSSCs): molecular engineering by DFT method. J Cluster Sci 32(2):243–253
doi: 10.1007/s10876-020-01783-x
Zou LY et al (2008) Theoretical study on photophysical properties of multifunctional electroluminescent molecules with different π-conjugated bridges. J Phys Chem A 112(47):12172–12178
pubmed: 18959398
doi: 10.1021/jp8032462
Takacs CJ et al (2012) Solar cell efficiency, self-assembly, and dipole–dipole interactions of isomorphic narrow-band-gap molecules. J Am Chem Soc 134(40):16597–16606
pubmed: 22950622
doi: 10.1021/ja3050713
Sutradhar T, Misra A (2018) Role of electron-donating and electron-withdrawing groups in tuning the optoelectronic properties of difluoroboron–napthyridine analogues. J Phys Chem A 122(16):4111–4120
pubmed: 29634263
doi: 10.1021/acs.jpca.8b00261
Manzoor F et al (2018) Theoretical calculations of the optical and electronic properties of dithienosilole-and dithiophene-based donor materials for organic solar cells. ChemistrySelect 3(5):1593–1601
doi: 10.1002/slct.201703086
Li Y (2012) Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res 45(5):723–733
pubmed: 22288572
doi: 10.1021/ar2002446
Scharber MC et al (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794
doi: 10.1002/adma.200501717