The lane-switch mechanism for nucleosome repositioning by DNA translocase.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
20 09 2021
Historique:
accepted: 26 07 2021
revised: 18 07 2021
received: 20 04 2021
pubmed: 9 8 2021
medline: 9 11 2021
entrez: 8 8 2021
Statut: ppublish

Résumé

Translocases such as DNA/RNA polymerases, replicative helicases, and exonucleases are involved in eukaryotic DNA transcription, replication, and repair. Since eukaryotic genomic DNA wraps around histone octamers and forms nucleosomes, translocases inevitably encounter nucleosomes. A previous study has shown that a nucleosome repositions downstream when a translocase collides with the nucleosome. However, the molecular mechanism of the downstream repositioning remains unclear. In this study, we identified the lane-switch mechanism for downstream repositioning with molecular dynamics simulations and validated it with restriction enzyme digestion assays and deep sequencing assays. In this mechanism, after a translocase unwraps nucleosomal DNA up to the site proximal to the dyad, the remaining wrapped DNA switches its binding lane to that vacated by the unwrapping, and the downstream DNA rewraps, completing downstream repositioning. This mechanism may have broad implications for transcription through nucleosomes, histone recycling, and nucleosome remodeling.

Identifiants

pubmed: 34365508
pii: 6345465
doi: 10.1093/nar/gkab664
pmc: PMC8450081
doi:

Substances chimiques

Histones 0
Nucleosomes 0
DNA-Directed RNA Polymerases EC 2.7.7.6
Exodeoxyribonucleases EC 3.1.-
DNA Helicases EC 3.6.4.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9066-9076

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

PLoS One. 2016 Jun 07;11(6):e0156905
pubmed: 27272176
PLoS Comput Biol. 2021 Jul 27;17(7):e1009253
pubmed: 34314440
J Mol Biol. 2002 Aug 9;321(2):249-63
pubmed: 12144782
Acc Chem Res. 2015 Dec 15;48(12):3026-35
pubmed: 26575522
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):E5787-95
pubmed: 26460019
Sci Adv. 2016 Nov 11;2(11):e1601865
pubmed: 27847876
Science. 1998 Oct 30;282(5390):902-7
pubmed: 9794753
Mol Cell. 1999 Sep;4(3):377-86
pubmed: 10518218
J Mol Biol. 2002 Jun 21;319(5):1097-113
pubmed: 12079350
Nat Biotechnol. 2018 Apr;36(4):338-345
pubmed: 29431738
Nature. 1997 Sep 18;389(6648):251-60
pubmed: 9305837
J Mol Biol. 2010 Oct 15;403(1):1-10
pubmed: 20800598
Nat Struct Mol Biol. 2011 Nov 13;18(12):1394-9
pubmed: 22081017
J Biol Chem. 2003 Sep 19;278(38):36148-56
pubmed: 12851391
Nat Struct Mol Biol. 2009 Feb;16(2):124-9
pubmed: 19136959
Nat Genet. 1995 Feb;9(2):184-90
pubmed: 7719347
Cell. 1994 Jan 28;76(2):371-82
pubmed: 8293470
J Chem Phys. 2014 Oct 28;141(16):165103
pubmed: 25362344
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6322-E6331
pubmed: 28716908
Nat Rev Mol Cell Biol. 2017 Sep;18(9):548-562
pubmed: 28537572
J Biol Chem. 2001 Aug 3;276(31):29104-10
pubmed: 11390400
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8872-7
pubmed: 18583476
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10550-5
pubmed: 25002491
Cell. 1992 Oct 2;71(1):11-22
pubmed: 1394427
Cell. 1995 Oct 6;83(1):19-27
pubmed: 7553869
Nature. 2010 Dec 16;468(7326):983-7
pubmed: 21107319
Mol Cell. 2002 Mar;9(3):541-52
pubmed: 11931762
Cell. 2008 Mar 7;132(5):887-98
pubmed: 18329373
Science. 2020 Oct 23;370(6515):450-454
pubmed: 32913000
Science. 1997 Dec 12;278(5345):1960-3
pubmed: 9395401
Nat Struct Mol Biol. 2009 Dec;16(12):1272-8
pubmed: 19935686
Annu Rev Biophys. 2013;42:241-63
pubmed: 23451891
Science. 2009 Jul 31;325(5940):626-8
pubmed: 19644123
PLoS Comput Biol. 2017 Dec 1;13(12):e1005880
pubmed: 29194442
J Mol Biol. 1995 Nov 24;254(2):130-49
pubmed: 7490738
Annu Rev Biochem. 2007;76:23-50
pubmed: 17506634
Nucleic Acids Res. 2014 Feb;42(3):1619-27
pubmed: 24234452
Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11163-8
pubmed: 9736707
J Chem Theory Comput. 2011 Jun 14;7(6):1979-89
pubmed: 26596457
BMC Bioinformatics. 2017 Mar 7;18(1):157
pubmed: 28270095
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):E2514-22
pubmed: 22908247

Auteurs

Fritz Nagae (F)

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.

Giovanni B Brandani (GB)

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.

Shoji Takada (S)

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.

Tsuyoshi Terakawa (T)

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH