Effect of extracorporeal shock waves on inflammation and angiogenesis of integumentary tissue in obese individuals: stimulating repair and regeneration.


Journal

Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515

Informations de publication

Date de publication:
Mar 2022
Historique:
received: 24 04 2021
accepted: 21 07 2021
pubmed: 9 8 2021
medline: 16 3 2022
entrez: 8 8 2021
Statut: ppublish

Résumé

The technology of extracorporeal shock wave therapy (ESWT) has been studied around the world for its possible benefits in the treatment and rehabilitation of aesthetic disorders. To better elucidate its real physiological effect on the integumentary tissue, this study was proposed aimed at evaluating whether ESWT can act to stimulate the inflammatory process and angiogenesis in the dermis and epidermis of obese individuals. This is an immunohistological study that evaluated a set of samples of the integumentary tissue of women with grade II obesity with weight loss of 10% of the initial weight undergoing ESWT treatment; the collection of biological material was performed at the time of surgery of bariatric surgery. For immunohistochemical evaluation, the markers to assess the presence and distribution of inflammatory cells, anti-COX-2, CD3, CD20, CD163, and NK were used. For physiological stimulus pathways for blood vessel angiogenesis, markers CD 34, CD 105 and VEGF were used. Fourteen obese women were included in the study. Positivity was evidenced in the epidermal expression of markers of the inflammatory process COX-2, CD3, CD20, NK cells, CD68, and CD163 (p < 0.0001) in the intervention sample when compared to controls. There was a positive expression for the angiogenesis markers CD105 and VEGF (p < 0.0001) when comparing the intervention group with the control group. It was concluded that ESWT can stimulate a local inflammatory process, mediating and modulating important growth factors to act in the repair process and skin tissue regeneration, being considered a promising treatment for skin diseases related to weight gain or loss.

Identifiants

pubmed: 34365545
doi: 10.1007/s10103-021-03387-x
pii: 10.1007/s10103-021-03387-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1289-1297

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.

Références

Dąbrowska AK, Spano F, Derler S et al (2018) The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol 24(2):165–174
doi: 10.1111/srt.12424
Bonté F, Girard D, Archambault JC, Desmoulière A (2019) Skin changes during ageing. Subcell Biochem 91:249–280
doi: 10.1007/978-981-13-3681-2_10
Greenway FL (2015) Physiological adaptations to weight loss and factor favoring weight regain. Int J Obes 39(8):1188–1196
doi: 10.1038/ijo.2015.59
Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metab, Clin Exp 92:6–10
doi: 10.1016/j.metabol.2018.09.005
Modena D, da Silva CN, Grecco C, Guidi RM, Moreira RG, Coelho AA, de Souza JR (2017) Extracorporeal shockwave: mechanisms of action and physiological aspects for cellulite, body shaping, and localized fat Systematic review. J Cosmet Laser Ther 19(6):314–319
doi: 10.1080/14764172.2017.1334928
Knobloch K, Kraemer R (2015) Extracorporeal shock wave therapy (ESWT) for the treatment of cellulite–a current meta-analysis. International journal of surgery (London, England) 24(Pt B):210–217
doi: 10.1016/j.ijsu.2015.07.644
de Lima Morais TM, Meyer PF, de Vasconcellos LS, Silva E, J. C., E Andrade, I. F., de Farias, V., … Soares, C. D. (2019) Effects of the extracorporeal shock wave therapy on the skin: an experimental study. Lasers Med Sci 34(2):389–396
doi: 10.1007/s10103-018-2612-8
Poeggeler B, Schulz C, Pappolla MA et al (2010) Leptin and the skin: a new frontier. Exp Dermatol 19(1):12–18
doi: 10.1111/j.1600-0625.2009.00930.x
Hirt PA, MD, David E. Castillo, MD, Gil Yosipovitch, MD, and Jonette E. Keri, MD, Ph.D. a, b Miami, Florida. (2019) Skin changes in the obese patient. J Am Acad Dermatol 81(5):1037–1057
doi: 10.1016/j.jaad.2018.12.070
Malliaropoulos N, Crate G, Meke M, Korakakis V, Nauck T, Lohrer H, et al. (2016) Success and recurrence rate after radial extracorporeal shock wave therapy for plantar fasciopathy: a retrospective study. Biomed Res Int. 1–8.
Kuhn C (2008) Impact of extracorporeal shock waves on the human skin with cellulite: a case study of a unique instance. Clin Interv Aging 3(1):201–210
doi: 10.2147/CIA.S2334
Woodley DT (2017) Distinct fibroblasts in the papillary and reticular dermis: implications for wound healing. Dermatol Clin 35(1):95–100
doi: 10.1016/j.det.2016.07.004
Aguilera-Sáez J, Muñoz P, Serracanta J, Monte A, Barret JP. (2019) Extracorporeal shock wave therapy role in the treatment of burn patients. A systematic literature review. Burns. 3; S0305–4179(19)30211–6.
Gallo JRB, Maschio-Signorini LB, Cabral CRB, de Campos Zuccari DAP, Nogueira ML, Bozola AR, Cury PM, Vidotto A (2019) Skin protein profile after major weight loss and its role in body contouring surgery. Plast Reconstr Surg Glob Open. 19;7(8):e2339
Siems W, Grune T, Voss P, Brenke R (2005) Anti-fibrosclerotic effects of shock wave therapy in lipedema and cellulite. BioFactors 24(1):275–282
doi: 10.1002/biof.5520240132
Sukubo NG, Tibalt E, Respizzi S, Locati M, d’Agostino MC (2015) Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling. Int J Surg 24(Pt B):124–130
doi: 10.1016/j.ijsu.2015.07.719
de Girolamo L, Stanco D, Galliera E, Viganò M, Lovati AB, Marazzi MG, Romeo P, Sansone V (2014) Soft-focused extracorporeal shock waves increase the expression of tendon-specific markers and the release of anti-inflammatory cytokines in an adherent culture model of primary human tendon cells. Ultrasound Med Biol 40(6):1204–1215
doi: 10.1016/j.ultrasmedbio.2013.12.003
Angehrn F, Kuhn C, Voss, (2007) A Can cellulite be treated with low-energy extracorporeal shock wave therapy? Clin Interv Aging 2(4):623–630
pubmed: 18225463 pmcid: 2686339
de Araújo R, Lôbo M, Trindade K, Silva DF, Pereira N (2019) Fibroblast growth factors: a controlling mechanism of skin aging. Skin Pharmacol Physiol 32(5):275–282
doi: 10.1159/000501145
Goetz R, Mohammadi M (2013) Explorando mecanismos de sinalização de FGF através das lentes da biologia estrutural. Nat Rev Mol Cell Biol 14(3):166–180
doi: 10.1038/nrm3528
Filho D, Medeiros A et al (2007) Efeitos do fator básico de crescimento de fibroblastos e seu antifator na cicatrização e maturação de colágeno da ferida cutânea infectada. Acta Cir Bras 22(1):64–71
doi: 10.1590/S0102-86502007000700013
Humphrey JD, Dufresne ER, Schwartz MA (2014) Mecanotransdução e homeostase da matriz extracelular. Nat Rev Mol Cell Biol 15(12):802–812
doi: 10.1038/nrm3896
Alvarez N, Ortiz L, Vicente V, Alcaraz M, Sánchez-Pedreño P (2008) The effects of radiofrequency on skin: experimental study. Lasers Surg Med 40(2):76–82
doi: 10.1002/lsm.20594
Im C-N, Kim E-H, Park A-K, Park W-Y (2010) Classification of biological effect of 1,763 MHz radiofrequency radiation based on gene expression profiles. Genomics Informatics 8(1):34–40
doi: 10.5808/GI.2010.8.1.034
Meyer PF, de Oliveira P, Silva FKBA, da Costa ACS, Pereira CRA, Casenave S, Valentim Silva RM, Araújo-Neto LG, Santos-Filho SD, Aizamaque E, Araújo HG, Bernardo-Filho M, Carvalho MGF, Soares CD (2017) Radiofrequency treatment inducesfibroblast growth factor 2 expression and subsequently promotes neocollagenesisand neoangiogenesis in the skin tissue. Lasers Med Sci 32(8):1727–1736
doi: 10.1007/s10103-017-2238-2
Miller I, Min M, Yang C, Tian C, Gookin S, Carter D, Spencer SL (2018) Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep 24(5):1105-1112.e5
doi: 10.1016/j.celrep.2018.06.110
Modena DAO, Guidi RM, Soares CD, Cazzo E, Chaim EA (2020) Ondas de choque eletromagnéticas na Dermatologia: análise microscopoca de sua interação com a possível resução do tecido adipose. Surg Cosmet Dermatol 04:352–358
Sun X, Kaufman PD (2018) Ki-67: more than a proliferation marker. Chromosoma 127(2):175–186
doi: 10.1007/s00412-018-0659-8
Huang TH, Sun CK, Chen YL et al (2017) A onda de choque aprimora a angiogênese através da ativação e reciclagem do VEGFR2. Mol Med 22:850–862
doi: 10.2119/molmed.2016.00108
Sundaram S, Sellamuthu K, Nagavelu K, Suma HR, Das A, Narayan R, Chakravortty D, Gopalan J, Eswarappa SM (2018) Stimulation of angiogenesis using single-pulse low-pressure shock wave treatment. J Mol Med (Berl) 96(11):1177–1187
doi: 10.1007/s00109-018-1690-1
Shipman AR, Millington GW (2011) Obesity and the skin. Br J Dermatol 165(4):743–750
doi: 10.1111/j.1365-2133.2011.10393.x
Wolf AM, Beisiegel U (2007) The effect of loss of excess weight on the metabolic risk factors after bariatric surgery in morbidly and super-obese patients. Obes Surg 17(7):910–919
doi: 10.1007/s11695-007-9169-0
Christ C, Brenke R, Sattler G, Siems W, Novak P, Daser A (2008) Improvement in skin elasticity in the treatment of cellulite and connective tissue weakness by means of extracorporeal pulse activation therapy. Aesthetic Surg J 28(5):538–544
doi: 10.1016/j.asj.2008.07.011
Modena DAO, Silva CN, Delinocente TCP, Araújo BT, de Carvalho MT, Grecco C, Moreira GR, Moraes CG, Souza JR, Guidi RM (2019) Shock wave therapy associated with radiofrequency in the treatment of abdominal skin flaccidity. Journal of Dermatology & Cosmetology 3(3):69–73
doi: 10.15406/jdc.2019.03.00116
Modena DAO, Nogueira da Silva C, Delinocente TCP, Bianca de Araújo T, de Carvalho TM, Grecco C, Moreira RG, Campos G, de Souza JR, Michelini Guidi R. (2019) Effectiveness of the electromagnetic shock wave therapy in the treatment of cellulite. Dermatol Res Pract 20
Ornitz DM, Itoh N (2015) A via de sinalização do Fator de Crescimento de Fibroblastos. Wiley Interdiscip Rev Dev Biol 4(3):215–266
doi: 10.1002/wdev.176

Auteurs

Débora Aparecida Oliveira Modena (DAO)

Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil. de_modena@yahoo.com.br.
Research, Development and Innovation Department, Study Group in Applied Technologies for Health, Amparo São Paulo, Brazil. de_modena@yahoo.com.br.

Ciro Dantas Soares (CD)

Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil.

Elaine Cristina Candido (EC)

Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil.

Felipe David Mendonça Chaim (FDM)

Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil.

Everton Cazzo (E)

Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil.

Elinton Adami Chaim (EA)

Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH