Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders.
Journal
Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society
ISSN: 1537-1603
Titre abrégé: J Clin Neurophysiol
Pays: United States
ID NLM: 8506708
Informations de publication
Date de publication:
01 Feb 2022
01 Feb 2022
Historique:
pubmed:
10
8
2021
medline:
10
2
2022
entrez:
9
8
2021
Statut:
ppublish
Résumé
Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Identifiants
pubmed: 34366399
doi: 10.1097/WNP.0000000000000784
pii: 00004691-202202000-00006
pmc: PMC8810902
mid: NIHMS1622829
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
135-148Subventions
Organisme : NICHD NIH HHS
ID : P50 HD105351
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH100186
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS088583
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH120438
Pays : United States
Informations de copyright
Copyright © 2021 by the American Clinical Neurophysiology Society.
Déclaration de conflit d'intérêts
A. Rotenberg is a founder and advisor for Neuromotion, serves on the medical advisory board or has consulted for Cavion, Epihunter, Gamify, Neural Dynamics, NeuroRex, Roche, Otsuka, and is listed as inventor on a patent related to integration of TMS and EEG. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev 2017;83:381–404.
Tsuboyama M, Kaye HL, Rotenberg A. Biomarkers obtained by transcranial magnetic stimulation of the motor cortex in epilepsy. Front Integr Neurosci 2019;13:57.
Brighina F, Raieli V, Messina LM, et al. Non-invasive brain stimulation in pediatric migraine: a perspective from evidence in adult migraine. Front Neurol 2019;10:364.
Zaghi S, Thiele B, Pimentel D, Pimentel T, Fregni F. Assessment and treatment of pain with non-invasive cortical stimulation. Restor Neurol Neurosci 2011;29:439–451.
Croarkin PE, Wall CA, Lee J. Applications of transcranial magnetic stimulation (TMS) in child and adolescent psychiatry. Int Rev Psychiatry 2011;23:445–453.
Frye RE, Rotenberg A, Ousley M, Pascual-Leone A. Transcranial magnetic stimulation in child Neurology: current and future directions. J Child Neurol 2008;23:79–96.
Garvey MA, Gilbert DL. Transcranial magnetic stimulation in children. Eur J Paediatr Neurol 2004;8:7–19.
Gilbert DL, Garvey MA, Bansal AS, Lipps T, Zhang J, Wassermann EM. Should transcranial magnetic stimulation research in children be considered minimal risk? Clin Neurophysiol 2004;115:1730–1739.
Hong YH, Wu SW, Pedapati EV, et al. Safety and tolerability of theta burst stimulation vs. single and paired pulse transcranial magnetic stimulation: a comparative study of 165 pediatric subjects. Front Hum Neurosci 2015;9:29.
Zewdie E, Ciechanski P, Kuo H, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: prospective single center evidence from 3.5 million stimulations. Brain Stimul 2020;13:565–575.
Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul 2015;8:76–87.
Barker AT. Transcranial magnetic stimulation–past, present and future. Brain Stimul 2017;10:540.
Rotenberg A, Horvath JC, Pascual-Leone A, eds. Transcranial magnetic stimulation. New York: Humana Press : Springer, 2014.
Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng 2007;9:527–565.
Amassian VE, Eberle L, Maccabee PJ, Cracco RQ. Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: the significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol 1992;85:291–301.
Maccabee PJ, Amassian VE, Eberle LP, Cracco RQ. Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. J Physiol (Lond) 1993;460:201–219.
Neggers SF, Petrov PI, Mandija S, Sommer IE, van den Berg NA. Understanding the biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between brain stimulation and cognition. Prog Brain Res 2015;222:229–259.
Wilson MT, Fulcher BD, Fung PK, Robinson PA, Fornito A, Rogasch NC. Biophysical modeling of neural plasticity induced by transcranial magnetic stimulation. Clin Neurophysiol 2018;129:1230–1241.
Rotem A, Moses E. Magnetic stimulation of one-dimensional neuronal cultures. Biophys J 2008;94:5065–5078.
Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A. How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 2011;58:849–859.
Vlachos A, Müller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2012;32:17514–17523.
Funke K. Transcranial magnetic stimulation of rodents: repetitive transcranial magnetic stimulation—a noninvasive way to induce neural plasticity in vivo and in vitro. In: Handbook of Behavioral Neuroscience. B.V., Amsterdam: Elsevier, 2018;365–387.
Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 1987;20:74–93.
Haider B, McCormick DA. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 2009;62:171–189.
Isaacson JS, Scanziani M. How inhibition shapes cortical activity. Neuron 2011;72:231–243.
Anderson JS, Carandini M, Ferster D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 2000;84:909–926.
Wehr M, Zador AM. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 2003;426:442–446.
Wilent WB, Contreras D. Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity. J Neurosci 2004;24:3985–3998.
Atallah BV, Scanziani M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 2009;62:566–577.
Haider B, Duque A, Hasenstaub AR, McCormick DA. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 2006;26:4535–4545.
Okun M, Lampl I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 2008;11:535–537.
Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015;126:1071–1107.
Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex: corticospinal activity and the human motor cortex. J Physiol 2014;592:4115–4128.
Davila-Pérez P, Jannati A, Fried PJ, Cudeiro Mazaira J, Pascual-Leone A. The effects of waveform and current direction on the efficacy and test–retest reliability of transcranial magnetic stimulation. Neuroscience 2018;393:97–109.
Kaye HL, Gersner R, Boes AD, Pascual-Leone A, Rotenberg A. Persistent uncrossed corticospinal connections in patients with intractable focal epilepsy. Epilepsy Behav 2017;75:66–71.
Papadelis C, Kaye H, Shore B, Snyder B, Grant PE, Rotenberg A. Maturation of corticospinal tracts in children with hemiplegic cerebral palsy assessed by diffusion tensor imaging and transcranial magnetic stimulation. Front Hum Neurosci 2019;13:254.
Kaye HL, Peters JM, Gersner R, Chamberland M, Sansevere A, Rotenberg A. Neurophysiological evidence of preserved connectivity in tuber tissue. Epilepsy Behav Case Rep 2017;7:64–68.
Chen R, Cros D, Curra A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119:504–532.
Lamy JC, Wargon I, Mazevet D, Ghanim Z, Pradat-Diehl P, Katz R. Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain 2009;132:734–748.
Levy WJ, Amassian VE, Schmid UD, Jungreis C. Mapping of motor cortex gyral sites non-invasively by transcranial magnetic stimulation in normal subjects and patients. Electroencephalogr Clin Neurophysiol Suppl 1991;43:51–75.
Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 2000;111:800–805.
Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994;117:847–858.
Wolters A, Ziemann U, Benecke R. The cortical silent period. In: The Oxford handbook of transcranial stimulation. New York: Oxford University Press, 2008;91–102.
Person R, Kozhina G. Investigation of the silent period by a poststimulus histogram method. Neurophysiology 1978;10:123–129.
Wolters A, Ziemann U, Benecke R. The cortical silent period. Epstein CM, Wassermann EM, Ziemann U, eds. Vol 1. New York: Oxford University Press, 2012.
Rotenberg A. Measures of cortical excitability by transcranial magnetic stimulation. In: Pearl PL, ed. Inherited metabolic epilepsies. New York: Demos, 2018;201–206.
Inghilleri M, Mattia D, Berardelli A, Manfredi M. Asymmetry of cortical excitability revealed by transcranial stimulation in a patient with focal motor epilepsy and cortical myoclonus. Electroencephalogr Clin Neurophysiol 1998;109:70–72.
Cicinelli P, Mattia D, Spanedda F, et al. Transcranial magnetic stimulation reveals an interhemispheric asymmetry of cortical inhibition in focal epilepsy. Neuroreport 2000;11:701–707.
Hamer HM, Reis J, Mueller HH, et al. Motor cortex excitability in focal epilepsies not including the primary motor area: a TMS study. Brain 2005;128(pt 4):811–818.
Cincotta M, Borgheresi A, Lori S, Fabbri M, Zaccara G. Interictal inhibitory mechanisms in patients with cryptogenic motor cortex epilepsy: a study of the silent period following transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 1998;107:1–7.
Tataroglu C, Ozkiziltan S, Baklan B. Motor cortical thresholds and cortical silent periods in epilepsy. Seizure 2004;13:481–485.
Macdonell RA, King MA, Newton MR, Curatolo JM, Reutens DC, Berkovic SF. Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology 2001;57:706–708.
Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 1997;114:329–338.
Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG. Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 2001;112:931–937.
Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W. Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol (Lond) 1998;511(pt 1):181–190.
Tokimura H, Ridding MC, Tokimura Y, Amassian VE, Rothwell JC. Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex. Electroencephalogr Clin Neurophysiol 1996;101:263–272.
Hanajima R, Ugawa Y, Terao Y, et al. Mechanisms of intracortical I-wave facilitation elicited with paired-pulse magnetic stimulation in humans. J Physiol (Lond) 2002;538:253–261.
Ilić TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol (Lond) 2002;545:153–167.
Moliadze V, Giannikopoulos D, Eysel UT, Funke K. Paired-pulse transcranial magnetic stimulation protocol applied to visual cortex of anaesthetized cat: effects on visually evoked single-unit activity: ppTMS effects on visually evoked activity. J Physiol 2005;566:955–965.
Claus D, Weis M, Jahnke U, Plewe A, Brunhölzl C. Corticospinal conduction studied with magnetic double stimulation in the intact human. J Neurol Sci 1992;111:180–188.
Valls-Sole J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol 1992;85:355–364.
Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H. Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol (Lond) 1997;498(pt 3):817–823.
Di Lazzaro V, Pilato F, Dileone M, et al. GABA A receptor subtype specific enhancement of inhibition in human motor cortex: GABA A receptor subtype-specific enhancement of SICI. J Physiol 2006;575:721–726.
Lang N, Sueske E, Hasan A, Paulus W, Tergau F. Pregabalin exerts oppositional effects on different inhibitory circuits in human motor cortex: a double-blind, placebo-controlled transcranial magnetic stimulation study. Epilepsia 2006;47:813–819.
Sohn YH, Kaelin-Lang A, Jung HY, Hallett M. Effect of levetiracetam on human corticospinal excitability. Neurology 2001;57:858–863.
Ziemann U, Tam A, Bütefisch C, Cohen LG. Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clin Neurophysiol 2002;113:1308–1315.
Hsieh TH, Dhamne SC, Chen JJ, Pascual-Leone A, Jensen FE, Rotenberg A. A new measure of cortical inhibition by mechanomyography and paired-pulse transcranial magnetic stimulation in unanesthetized rats. J Neurophysiol 2012;107:966–972.
Walther M, Berweck S, Schessl J, et al. Maturation of inhibitory and excitatory motor cortex pathways in children. Brain Dev 2009;31:562–567.
Daskalakis ZJ, Möller B, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp Brain Res 2006;174:403–412.
Ziemann U. Chapter 23 pharmacology of TMS. In: Supplements to clinical Neurophysiology. B.V., Amsterdam: Elsevier, 2003;226–231.
Bäumer T, Bock F, Koch G, et al. Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways: interhemispheric facilitation through motor and premotor pathways. J Physiol 2006;572:857–868.
Pascual-Leone A, Walsh V. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 2001;292:510–512.
Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 1996;348:233–237.
Pascual-Leone A, Gomez-Tortosa E, Grafman J, Alway D, Nichelli P, Hallett M. Induction of visual extinction by rapid-rate transcranial magnetic stimulation of parietal lobe. Neurology 1994;44:494–498.
Valero-Cabré A, Payne BR, Pascual-Leone A. Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 2007;176:603–615.
Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 2006;117:2584–2596.
Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201–206.
Stagg CJ, Wylezinska M, Matthews PM, et al. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol 2009;101:2872–2877.
Wischnewski M, Schutter DJLG. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul 2015;8:685–692.
Huerta PT, Volpe BT. Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J Neuroeng Rehabil 2009;6:7.
Oberman L, Eldaief M, Fecteau S, Ifert-Miller F, Tormos JM, Pascual-Leone A. Abnormal modulation of corticospinal excitability in adults with Asperger's syndrome. Eur J Neurosci 2012;36:2782–2788.
Pascual-Leone A, Freitas C, Oberman L, et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topography 2011;24:302–315.
Jannati A, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Interindividual variability in response to continuous theta-burst stimulation in healthy adults. Clin Neurophysiol 2017;128:2268–2278.
Jannati A, Fried PJ, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Test–retest reliability of the effects of continuous theta-burst stimulation. Front Neurosci 2019;13:447.
Fried PJ, Jannati A, Davila-Pérez P, Pascual-Leone A. Reproducibility of single-pulse, paired-pulse, and intermittent theta-burst TMS measures in healthy aging, type-2 diabetes, and Alzheimer's disease. Front Aging Neurosci 2017;9:263.
López-Alonso V, Cheeran B, Río-Rodríguez D, Fernández-Del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul 2014;7:372–380.
Cárdenas-Morales L, Nowak DA, Kammer T, Wolf RC, Schönfeldt-Lecuona C. Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topogr 2010;22:294–306.
Huang YZ, Chen RS, Rothwell JC, Wen HY. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 2007;118:1028–1032.
Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000;123(pt 3):572–584.
Müller-Dahlhaus JFM, Orekhov Y, Liu Y, Ziemann U. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 2008;187:467–475.
Hebb DO. The organization of behavior: a Neuropsychological theory. New York: John Wiley & Sons, 1949.
Wolters A, Sandbrink F, Schlottmann A, et al. A temporally asymmetric hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 2003;89:2339–2345.
Classen J, Wolters A, Stefan K, et al. Chapter 59 Paired associative stimulation. In: Supplements to clinical Neurophysiology. B.V., Amsterdam: Elsevier, 2004;563–569.
Di Lazzaro V, Dileone M, Profice P, et al. LTD-like plasticity induced by paired associative stimulation: direct evidence in humans. Exp Brain Res 2009;194:661–664.
Ziemann U, Ilić TV, Iliać TV, Pauli C, Meintzschel F, Ruge D. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 2004;24:1666–1672.
Christensen DL, Braun KVN, Baio J, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years: autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 2018;65:1–23.
American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). Arlington, VA: American Psychiatric Pub, 2013.
Cole EJ, Enticott PG, Oberman LM, et al. The potential of repetitive transcranial magnetic stimulation for autism spectrum disorder: a consensus statement. Biol Psychiatry 2019;85:e21–e22.
Gogolla N, Leblanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord 2009;1:172–181.
Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 2015;87:684–698.
Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003;2:255–267.
Théoret H, Halligan E, Kobayashi M, Fregni F, Tager-Flusberg H, Pascual-Leone A. Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Curr Biol 2005;15:R84–R85.
Enticott PG, Kennedy HA, Rinehart NJ, Tonge BJ, Bradshaw JL, Fitzgerald PB. GABAergic activity in autism spectrum disorders: an investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology 2013;68:202–209.
Enticott PG, Kennedy HA, Rinehart NJ, et al. Mirror neuron activity associated with social impairments but not age in autism spectrum disorder. Biol Psychiatry 2012;71:427–433.
Jung NH, Janzarik WG, Delvendahl I, et al. Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome: long-term Potentiation-like Plasticity in ASD. Dev Med Child Neurol 2013;55:83–89.
Pedapati EV, Gilbert DL, Erickson CA, et al. Abnormal cortical plasticity in youth with autism spectrum disorder: a transcranial magnetic stimulation case-control pilot study. J Child Adolesc Psychopharmacol 2016;26:625–631.
Pedapati EV, Mooney LN, Wu SW, et al. Motor cortex facilitation: a marker of attention deficit hyperactivity disorder co-occurrence in autism spectrum disorder. Transl Psychiatry 2019;9:298.
Oberman LM, Ifert-Miller F, Najib U, et al. Abnormal mechanisms of plasticity and metaplasticity in autism spectrum disorders and fragile X syndrome. J Child Adolesc Psychopharmacol 2016;26:617–624.
Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 1982;2:32–48.
Oberman LM, Rotenberg A, Pascual-Leone A. Aberrant brain plasticity in autism spectrum disorders. In: Cognitive plasticity in Neurologic disorders. New York: Oxford University Press, 2015;176–196.
Oberman LM, Pascual-Leone A, Rotenberg A. Modulation of corticospinal excitability by transcranial magnetic stimulation in children and adolescents with autism spectrum disorder. Front Hum Neurosci 2014;8:627.
Jannati A, Block G, Ryan MA, et al. Continuous theta-burst stimulation in children with high-functioning autism spectrum disorder and typically developing children. Front Integr Neurosci 2020;14:13.
Trippe J, Mix A, Aydin-Abidin S, Funke K, Benali A. Theta burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res 2009;199:411–421.
Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 2012;18:467–486.
Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 2012;36:2044–2055.
LeBlanc JJ, Fagiolini M. Autism: a “critical period” disorder? Neural Plast 2011;2011:921680.
Lemonnier E, Villeneuve N, Sonie S, et al. Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Transl Psychiatry 2017;7:e1124–e1056.
Hersh JH, Saul RA; Committee on Genetics. Health supervision for children with fragile X syndrome. Pediatrics 2011;127:994–1006.
Hunter J, Rivero-Arias O, Angelov A, Kim E, Fotheringham I, Leal J. Epidemiology of fragile X syndrome: a systematic review and meta-analysis. Am J Med Genet A 2014;164A:1648–1658.
Kaufmann WE, Cortell R, Kau AS, et al. Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 2004;129A:225–234.
Penagarikano O, Mulle JG, Warren ST. The pathophysiology of fragile x syndrome. Annu Rev Genomics Hum Genet 2007;8:109–129.
Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 2002;99:7746–7750.
Simonyi A, Schachtman TR, Christoffersen GRJ. The role of metabotropic glutamate receptor 5 in learning and memory processes. Drug News Perspect 2005;18:353–361.
Oberman L, Ifert-Miller F, Najib U, et al. Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile X syndrome and autism spectrum disorder. Front Synaptic Neurosci 2010;2:26.
Rubio B, Boes AD, Laganiere S, Rotenberg A, Jeurissen D, Pascual-Leone A. Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD): a review. J Child Neurol 2016;31:784–796.
Sonuga-Barke EJS. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 2005;57:1231–1238.
Gilbert DL, Isaacs KM, Augusta M, MacNeil LK, Mostofsky SH. Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology 2011;76:615–621.
Alexander GE, Crutcher MD, DeLong MR. Chapter 6 Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. In: Progress in brain research. B.V., Amsterdam: Elsevier, 1991:119–146.
Gilbert DL, Huddleston DA, Wu SW, et al. Motor cortex inhibition and modulation in children with ADHD. Neurology 2019;93:e599–e610.
Dutra TG, Baltar A, Monte-Silva KK. Motor cortex excitability in attention-deficit hyperactivity disorder (ADHD): a systematic review and meta-analysis. Res Dev Disabil 2016;56:1–9.
Buchmann J, Gierow W, Weber S, et al. Restoration of disturbed intracortical motor inhibition and facilitation in attention deficit hyperactivity disorder children by methylphenidate. Biol Psychiatry 2007;62:963–969.
Buchmann J, Wolters A, Haessler F, Bohne S, Nordbeck R, Kunesch E. Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD). Clin Neurophysiol 2003;114:2036–2042.
Bruxel EM, Akutagava-Martins GC, Salatino-Oliveira A, et al. ADHD pharmacogenetics across the life cycle: new findings and perspectives. Am J Med Genet 2014;165:263–282.
Chen R, Tam A, Bütefisch C, et al. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 1998;80:2870–2881.
Trompetto C, Buccolieri A, Marchese R, Marinelli L, Michelozzi G, Abbruzzese G. Impairment of transcallosal inhibition in patients with corticobasal degeneration. Clin Neurophysiol 2003;114:2181–2187.
Di Martino A, Zuo XN, Kelly C, et al. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry 2013;74:623–632.
Robertson MM. The prevalence and epidemiology of Gilles de la Tourette syndrome. J Psychosomatic Res 2008;65:461–472.
Robertson MM, Cavanna AE, Eapen V. Gilles de la Tourette syndrome and disruptive behavior disorders: prevalence, associations, and explanation of the relationships. J Neuropsychiatry Clin Neurosci 2015;27:33–41.
Du JC, Chiu TF, Lee KM, et al. Tourette syndrome in children: an updated review. Pediatr Neonatol 2010;51:255–264.
Orth M, Münchau A. Transcranial magnetic stimulation studies of sensorimotor networks in Tourette syndrome. Behav Neurol 2013;27:57–64.
Ziemann U, Paulus W, Rothenberger A. Decreased motor inhibition in Tourette's disorder: evidence from transcranial magnetic stimulation. Am J Psychiatry 1997;154:1277–1284.
Orth M, Amann B, Robertson MM, Rothwell JC. Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. Brain 2005;128(pt 6):1292–1300.
Orth M, Münchau A, Rothwell JC. Corticospinal system excitability at rest is associated with tic severity in Tourette syndrome. Biol Psychiatry 2008;64:248–251.
Heise KF, Steven B, Liuzzi G, et al. Altered modulation of intracortical excitability during movement preparation in Gilles de la Tourette syndrome. Brain 2010;133:580–590.
Gilbert DL, Bansal AS, Sethuraman G, et al. Association of cortical disinhibition with tic, ADHD, and OCD severity in Tourette syndrome. Mov Disord 2004;19:416–425.
Gilbert DL, Sallee FR, Zhang J, Lipps TD, Wassermann EM. Transcranial magnetic stimulation-evoked cortical inhibition: a consistent marker of attention-deficit/hyperactivity disorder scores in Tourette syndrome. Biol Psychiatry 2005;57:1597–1600.
Orth M, Rothwell JC. Motor cortex excitability and comorbidity in Gilles de la Tourette syndrome. J Neurol Neurosurg Psychiatry 2009;80:29–34.
Greenberg BD, Ziemann U, Corá-Locatelli G, et al. Altered cortical excitability in obsessive-compulsive disorder. Neurology 2000;54:142–147.
Orth M, Snijders AH, Rothwell JC. The variability of intracortical inhibition and facilitation. Clin Neurophysiol 2003;114:2362–2369.
Orth M, Rothwell JC. The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clin Neurophysiol 2004;115:1076–1082.
Jackson SR, Parkinson A, Manfredi V, Millon G, Hollis C, Jackson GM. Motor excitability is reduced prior to voluntary movements in children and adolescents with Tourette syndrome. J Neuropsychol 2013;7:29–44.
Draper A, Jude L, Jackson GM, Jackson SR. Motor excitability during movement preparation in Tourette syndrome. J Neuropsychol 2015;9:33–44.
Ganos C, Rocchi L, Latorre A, et al. Motor cortical excitability during voluntary inhibition of involuntary tic movements. Mov Disord 2018;33:1804–1809.
Pépés SE, Draper A, Jackson GM, Jackson SR. Effects of age on motor excitability measures from children and adolescents with Tourette syndrome. Dev Cogn Neurosci 2016;19:78–86.
Suppa A, Belvisi D, Bologna M, et al. Abnormal cortical and brain stem plasticity in Gilles de la Tourette syndrome. Mov Disord 2011;26:1703–1710.
Wu SW, Gilbert DL. Altered neurophysiologic response to intermittent theta burst stimulation in Tourette syndrome. Brain Stimul 2012;5:315–319.
Suppa A, Marsili L, Di Stasio F, et al. Cortical and brainstem plasticity in Tourette syndrome and obsessive-compulsive disorder. Mov Disord 2014;29:1523–1531.
Brandt VC, Niessen E, Ganos C, Kahl U, Bäumer T, Münchau A. Altered synaptic plasticity in Tourette's syndrome and its relationship to motor skill learning. PLoS One 2014;9:e98417.
Bloodstein O A handbook on stuttering. 5th ed. San Diego: Singular Pub Group, 1995;586.
Mulligan HF, Anderson TJ, Jones RD, Williams MJ, Donaldson IM. Tics and developmental stuttering. Parkinsonism Relat Disord 2003;9:281–289.
Riva-Posse P, Busto-Marolt L, Schteinschnaider A, Martinez-Echenique L, Cammarota A, Merello M. Phenomenology of abnormal movements in stuttering. Parkinsonism Relat Disord 2008;14:415–419.
Yairi E, Ambrose NG. Early childhood stuttering for clinicians by clinicians. Austin: PRO-ED, 2005;521.
Sommer M, Wischer S, Tergau F, Paulus W. Normal intracortical excitability in developmental stuttering. Mov Disord 2003;18:826–830.
Busan P, D'Ausilio A, Borelli M, et al. Motor excitability evaluation in developmental stuttering: a transcranial magnetic stimulation study. Cortex 2013;49:781–792.
Alm PA, Karlsson R, Sundberg M, Axelson HW. Hemispheric lateralization of motor thresholds in relation to stuttering. Holmes NP, ed. PLoS One 2013;8:e76824.
Neef NE, Jung K, Rothkegel H, et al. Right-shift for non-speech motor processing in adults who stutter. Cortex 2011;47:945–954.
Neef NE, Paulus W, Neef A, von Gudenberg AW, Sommer M. Reduced intracortical inhibition and facilitation in the primary motor tongue representation of adults who stutter. Clin Neurophysiol 2011;122:1802–1811.
Neef NE, Hoang TN, Neef A, Paulus W, Sommer M. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter. Brain 2015;138:712–725.
Busan P, Del Ben G, Bernardini S, et al. Altered modulation of silent period in tongue motor cortex of persistent developmental stuttering in relation to stuttering severity. PLoS One 2016;11:e0163959.
Busan P, Battaglini PP, Sommer M. Transcranial magnetic stimulation in developmental stuttering: relations with previous neurophysiological research and future perspectives. Clin Neurophysiol 2017;128:952–964.
Chang S-E, Horwitz B, Ostuni J, Reynolds R, Ludlow CL. Evidence of left inferior frontal–premotor structural and functional connectivity deficits in adults who stutter. Cereb Cortex 2011;21:2507–2518.
Chang SE, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL. Brain anatomy differences in childhood stuttering. Neuroimage 2008;39:1333–1344.
Brainsway deep TMS system [internet]. Food and Drug Administration web site, 2013. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf12/K122288.pdf . Accessed February 1, 2016.
Magstim Rapid2 therapy system [internet]. Food and Drug Administration web site, 2015. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf14/K143531.pdf . Accessed February 1, 2016.
Magstim horizon TMS therapy system with navigation [internet]. Food and Drug Administration web site, 2019. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183376.pdf . Accessed June 15, 2019.
MagVenture MagVita TMS therapy system w/theta burst stimulation [internet]. Food and Drug Administration web site, 2018. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf17/K173620.pdf . Accessed June 15, 2019.
TeleEMG neurosoft TMS [internet]. Food and Drug Administration web site, 2016. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K160309.pdf . Accessed June 15, 2019.
Mag & more apollo TMS therapy system [internet]. Food and Drug Administration web site, 2018. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf18/K180313.pdf . Accessed June 15, 2019.
Nexstim navigated brain therapy (NBT) system 2 [internet]. Food and Drug Administration web site, 2018 Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182700.pdf . Accessed June 15, 2019.
eNeura spring TMS [internet]. Food and Drug Administration web site, 2016 Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K162797.pdf . Accessed June 15, 2019.
Nexstim eXimia navigated brain stimulation system [internet]. Food and Drug Administration web site, 2009. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf9/K091457.pdf . Accessed February 1, 2016.
Nexstim navigational brain stimulation (NBS) system 4, and nexstim NBS system 4 with NEXSPEECH [internet]. Food and Drug Administration web site, 2011. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf11/K112881.pdf . Accessed February 1, 2016.
Brainsway deep transcranial magnetic stimulation system [internet]. Food and Drug Administration web site, 2017. Available at: https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170078.pdf . Accessed June 15, 2019.
Peruzzotti-Jametti L, Bacigaluppi M, Sandrone S, Cambiaghi M. Emerging subspecialties in Neurology: transcranial stimulation. Neurology 2013;80:e33–e35.
Williams NR, Taylor JJ, Snipes JM, Short EB, Kantor EM, George MS. Interventional psychiatry: how should psychiatric educators incorporate neuromodulation into training? Acad Psychiatry 2014;38:168–176.
Boes AD, Kelly MS, Trapp NT, Stern AP, Press DZ, Pascual-Leone A. Noninvasive brain stimulation: challenges and opportunities for a new clinical specialty. J Neuropsychiatry Clin Neurosci 2018;30:173–179.
Lefaucheur JP, André-Obadia N, Antal A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014;125:2150–2206.
Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:2008–2039.
Loo CK, McFarquhar TF, Mitchell PB. A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int J Neuropsychopharmacol 2008;11:131–147.
Janicak PG, Dokucu ME. Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatr Dis Treat 2015;11:1549–1560.
Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 2000;133:425–430.
Maeda F, Gangitano M, Thall M, Pascual-Leone A. Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS). Clin Neurophysiol 2002;113:376–382.
Freitas C, Perez J, Knobel M, et al. Changes in cortical plasticity across the lifespan. Front Aging Neurosci 2011;3:5.
Corp DT, Bereznicki HGK, Clark GM, et al. Large-scale analysis of interindividual variability in theta-burst stimulation data: results from the “Big TMS Data Collaboration.” Brain Stimul 2020;13:1476–1488.
Huber TJ, Schneider U, Rollnik J. Gender differences in the effect of repetitive transcranial magnetic stimulation in schizophrenia. Psychiatry Res 2003;120:103–105.
De Gennaro L, Bertini M, Pauri F, et al. Callosal effects of transcranial magnetic stimulation (TMS): the influence of gender and stimulus parameters. Neurosci Res 2004;48:129–137.
Cahn SD, Herzog AG, Pascual-Leone A. Paired-pulse transcranial magnetic stimulation: effects of hemispheric laterality, gender, and handedness in normal controls. J Clin Neurophysiol 2003;20:371–374.
Cheeran B, Talelli P, Mori F, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol (Lond) 2008;586:5717–5725.
Antal A, Chaieb L, Moliadze V, et al. Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimul 2010;3:230–237.
Chang WH, Bang OY, Shin Y-I, Lee A, Pascual-Leone A, Kim YH. BDNF polymorphism and differential rTMS effects on motor recovery of stroke patients. Brain Stimul 2014;7:553–558.
Di Lazzaro V, Pellegrino G, Di Pino G, et al. Val66Met BDNF gene polymorphism influences human motor cortex plasticity in acute stroke. Brain Stimul 2015;8:92–96.
Peña-Gomez C, Solé-Padullés C, Clemente IC, et al. APOE status modulates the changes in network connectivity induced by brain stimulation in non-demented elders. PLoS One 2012;7:e51833.
Corp DT, Bereznicki HG, Clark GM, et al. Large-scale analysis of interindividual variability in single and paired-pulse TMS data: results from the “big TMS data collaboration.” Brain Stimul.2020;13:1476–1488.
Morris TP, Davila-Pérez P, Jannati A, Menardi A, Pascual-Leone A, Fried PJ. Aftereffects of intermittent theta-burst stimulation in adjacent, non-target muscles. Neuroscience 2019;418:157–165.
Cohen DA, Pascual-Leone A, Press DZ, Robertson EM. Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc Natl Acad Sci 2005;102:18237–18241.
Julkunen P, Säisänen L, Danner N, et al. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. NeuroImage 2009;44:790–795.
Foucher J, Lorgouilloux K, Turek J, et al. Robotic assistance in coil positioning improves reliability and comfort. In: 3rd Annual Conference of the German Society for Brain Stimulation–Modulating Emotions. Berlin, Germany: Freie Universitaet, 2012.
Civardi C, Boccagni C, Vicentini R, et al. Cortical excitability and sleep deprivation: a transcranial magnetic stimulation study. J Neurol Neurosurg Psychiatry 2001;71:809.
Kreuzer P, Langguth B, Popp R, et al. Reduced intra-cortical inhibition after sleep deprivation: a transcranial magnetic stimulation study. Neurosci Lett 2011;493:63–66.
Specterman M, Bhuiya A, Kuppuswamy A, Strutton P, Catley M, Davey N. The effect of an energy drink containing glucose and caffeine on human corticospinal excitability. Physiol Behav 2005;83:723–728.
Cerqueira V, de Mendonça A, Minez A, Dias AR, de Carvalho M. Does caffeine modify corticomotor excitability? Neurophysiol Clin 2006;36:219–226.
Badawy RAB, Vogrin SJ, Lai A, Cook MJ. Cortical excitability changes correlate with fluctuations in glucose levels in patients with epilepsy. Epilepsy Behav 2013;27:455–460.
Samii A, Wassermann EM, Hallett M. Post-exercise depression of motor evoked potentials as a function of exercise duration. Electroencephalogr Clin Neurophysiol 1997;105:352–356.
Lentz M, Nielsen JF. Post-exercise facilitation and depression of M wave and motor evoked potentials in healthy subjects. Clin Neurophysiol 2002;113:1092–1098.
Smith MJ, Keel JC, Greenberg BD, et al. Menstrual cycle effects on cortical excitability. Neurology 1999;53:2069–2072.
Hattemer K, Knake S, Reis J, et al. Excitability of the motor cortex during ovulatory and anovulatory cycles: a transcranial magnetic stimulation study. Clin Endocrinol (Oxf) 2007;66:387–393.
Zrenner C, Belardinelli P, Müller-Dahlhaus F, Ziemann U. Closed-loop neuroscience and non-invasive brain stimulation: a tale of two loops. Frontiers in cellular Neuroscience [internet], 2016. Available at: http://journal.frontiersin.org/Article/10.3389/fncel.2016.00092/abstract . Accessed March 14, 2019.
Zrenner C, Desideri D, Belardinelli P, Ziemann U. Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 2018;11:374–389.
Fox MD. Mapping symptoms to brain networks with the human connectome. N Engl J Med 2018;379:2237–2245.
Weigand A, Horn A, Caballero R, et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatry 2018;84:28–37.
Horn A, Fox MD. Opportunities of connectomic neuromodulation. NeuroImage 2020;221:117180.
Cash RFH, Cocchi L, Anderson R, et al. A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression. Hum Brain Mapp 2019;40:4618–4629.
Cash RFH, Zalesky A, Thomson RH, Tian Y, Cocchi L, Fitzgerald PB. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. Biol Psychiatry 2019;86:e5–e7.
Eshel N, Keller CJ, Wu W, et al. Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology 2020;45:1018–1025.
Brady RO, Gonsalvez I, Lee I, et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am J Psychiatry 2019;176:512–520.