Have artificial lighting and noise pollution caused zoonosis and the COVID-19 pandemic? A review.
Artificial lighting
Bat
Coronavirus
Noise pollution
SARS-CoV-2
Spillover
Journal
Environmental chemistry letters
ISSN: 1610-3653
Titre abrégé: Environ Chem Lett
Pays: United States
ID NLM: 101220458
Informations de publication
Date de publication:
2021
2021
Historique:
received:
11
05
2021
accepted:
19
07
2021
pubmed:
10
8
2021
medline:
10
8
2021
entrez:
9
8
2021
Statut:
ppublish
Résumé
Where did the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) come from? Did it spread to 'patient zero' through proactive human-animal contact? Why did humans faced an increasing number of zoonotic diseases in the past few decades? In this article, we propose a new theory by which human pollution such as artificial lighting and noise accentuate pathogen shedding from bats and other wild habitants in urban environments. This theory differs from the current hypothesis that wildlife trades and bushmeat consumption largely contribute to the spillover of zoonotic pathogens to humans. As natural reservoirs, bats harbor the greatest number of zoonotic viruses among all mammalian orders, while they also have a unique immune system to maintain functioning. Some bat species roost in proximity with human settlements, including urban communities and surrounding areas that are potentially most impacted by anthropogenic activities. We review the behavioral changes of wild habitants, including bats and other species, caused by environmental pollution such as artificial lighting and noise pollution, with focus on the spillover of zoonotic pathogens to humans. We found that there is a strong positive correlation between environmental stress and the behavior and health conditions of wild species, including bats. Specifically, artificial lighting attracts insectivorous bats to congregate around streetlights, resulting in changes in their diets and improved likelihood of close contact with humans and animals. Moreover, many bat species avoid lit areas by expending more energies on commuting and foraging. Noise pollution has similar effects on bat behavior. Bats exposed to chronic noise pollution have weakened immune functions, increased viral shedding, and declined immunity during pregnancy, lactation, and vulnerable periods due to noised-induced stress. Other wild species exposed to artificial lighting and noise pollution also show stress-induced behaviors and deteriorated health. Overall, evidence supports our hypothesis that artificial lighting and noise pollution have been overlooked as long-term contributors to the spillover of zoonotic pathogens to humans in urban environments.
Identifiants
pubmed: 34366755
doi: 10.1007/s10311-021-01291-y
pii: 1291
pmc: PMC8325529
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
4021-4030Informations de copyright
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Déclaration de conflit d'intérêts
Conflict of interestThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Science. 2017 May 5;356(6337):531-533
pubmed: 28473587
Curr Biol. 2010 Oct 12;20(19):1735-9
pubmed: 20850324
Proc Biol Sci. 2008 Apr 7;275(1636):861-9
pubmed: 18198149
Environ Pollut. 2020 Dec;267:115484
pubmed: 32882458
Environ Pollut. 2020 Aug;263(Pt B):114405
pubmed: 32320902
PLoS One. 2016 Aug 17;11(8):e0160441
pubmed: 27532635
Environ Chem Lett. 2021 Mar 25;:1-15
pubmed: 33786037
Sci Rep. 2018 Oct 19;8(1):15508
pubmed: 30341341
Nature. 2020 Nov;587(7835):605-609
pubmed: 33177710
Glob Chang Biol. 2015 Sep;21(9):3278-89
pubmed: 26046451
Curr Biol. 2009 Jul 14;19(13):1123-7
pubmed: 19540116
Environ Chem Lett. 2021 Apr 7;:1-15
pubmed: 33846683
Ann N Y Acad Sci. 2011 Mar;1223:1-38
pubmed: 21449963
Ecol Entomol. 2015 Jun;40(3):187-198
pubmed: 25914438
Nature. 2017 Jun 29;546(7660):646-650
pubmed: 28636590
Proc Biol Sci. 2015 Jan 7;282(1798):20142124
pubmed: 25392474
PLoS Pathog. 2012;8(10):e1002877
pubmed: 23055920
Ecol Evol. 2020 Apr 20;10(10):4471-4482
pubmed: 32489611
Environ Chem Lett. 2021;19(4):3477-3485
pubmed: 33776610
Environ Chem Lett. 2021 Feb 4;:1-17
pubmed: 33558807
Nature. 2017 Jun 12;546(7658):340
pubmed: 28617480
Sci Total Environ. 2021 May 1;767:145413
pubmed: 33558040
Ann N Y Acad Sci. 2018 Oct;1429(1):78-99
pubmed: 30138535
Emerg Infect Dis. 2011 Mar;17(3):449-56
pubmed: 21392436
Proc Biol Sci. 2011 Jun 7;278(1712):1646-52
pubmed: 21084347
Trends Ecol Evol. 2010 Mar;25(3):180-9
pubmed: 19762112
Lancet. 2003 Oct 25;362(9393):1353-8
pubmed: 14585636
Environ Chem Lett. 2021;19(4):2759-2771
pubmed: 33824633
Nature. 2020 Apr 14;:
pubmed: 32286540
Front Microbiol. 2018 Apr 11;9:702
pubmed: 29696007
Conserv Biol. 2008 Jun;22(3):721-32
pubmed: 18477030
Environ Chem Lett. 2021 Jan 3;:1-6
pubmed: 33424524
Proc Biol Sci. 2013 Jan 08;280(1754):20122798
pubmed: 23303546
Environ Chem Lett. 2020 May 20;:1-4
pubmed: 32837480
Sci Adv. 2016 Jun 10;2(6):e1600377
pubmed: 27386582
Trends Microbiol. 2015 Mar;23(3):172-80
pubmed: 25572882
Virology. 2017 Jul;507:1-10
pubmed: 28384506
Exp Biol Med (Maywood). 2009 Oct;234(10):1117-27
pubmed: 19546349
Sci Rep. 2015 Oct 16;5:15232
pubmed: 26472251
Sci Immunol. 2018 Jun 1;3(24):
pubmed: 29858289
Oecologia. 2019 Jan;189(1):69-77
pubmed: 30446844
Environ Chem Lett. 2021;19(3):1911-1915
pubmed: 33531884
J Exp Biol. 2008 Oct;211(Pt 19):3174-80
pubmed: 18805817
Lancet Infect Dis. 2020 Sep;20(9):1018-1019
pubmed: 32860762
Philos Trans R Soc Lond B Biol Sci. 2015 May 5;370(1667):
pubmed: 25780244
Nature. 2021 Jan;589(7842):363-370
pubmed: 33473223