Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders.

Alzheimer’s and Parkinson’s disease acetylcholine dopamine encapsulated cell-based system impulse control

Journal

Frontiers in behavioral neuroscience
ISSN: 1662-5153
Titre abrégé: Front Behav Neurosci
Pays: Switzerland
ID NLM: 101477952

Informations de publication

Date de publication:
2021
Historique:
received: 31 01 2021
accepted: 14 06 2021
entrez: 9 8 2021
pubmed: 10 8 2021
medline: 10 8 2021
Statut: epublish

Résumé

Historically, many investigations into neurodegenerative diseases have focused on alterations in specific neuronal populations such as, for example, the loss of midbrain dopaminergic neurons in Parkinson's disease (PD) and loss of cholinergic transmission in Alzheimer's disease (AD). However, it has become increasingly clear that mammalian brain activities, from executive and motor functioning to memory and emotional responses, are strictly regulated by the integrity of multiple interdependent neuronal circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic pathways as well as cholinergic innervation from basal forebrain and brainstem, play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and AD. Understanding the functional interactions of these circuits and the consequent neurological changes that occur during degeneration provides new opportunities to understand the fundamental inter-workings of the human brain as well as develop new potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted from a session of the European Behavioral Pharmacology Society meeting (Braga, Portugal, August 2019), we provide an update on our recent work in behavioral and cellular neuroscience that primarily focuses on interactions between cholinergic and dopaminergic systems in PD models, as well as stress in AD. These brief discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD, (2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of an implantable cell-based system for drug delivery directly the into brain and (4) the mechanisms through which day life stress, a risk factor for AD, damage protein and RNA homeostasis leading to AD neuronal malfunction.

Identifiants

pubmed: 34366802
doi: 10.3389/fnbeh.2021.661973
pmc: PMC8340002
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

661973

Informations de copyright

Copyright © 2021 Amalric, Pattij, Sotiropoulos, Silva, Sousa, Ztaou, Chiamulera, Wahlberg, Emerich and Paolone.

Déclaration de conflit d'intérêts

LW is the CEO of Gloriana Therapeutics, Inc., a for-profit biotechnology company that is developing the encapsulated cell technology to treat CNS diseases. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Mol Psychiatry. 2017 Aug;22(8):1110-1118
pubmed: 28555078
J Neurosci. 2011 May 25;31(21):7840-7
pubmed: 21613497
Mol Neurobiol. 2016 Sep;53(7):4745-53
pubmed: 26328538
Front Aging Neurosci. 2015 Apr 02;7:43
pubmed: 25883567
EMBO J. 2018 Oct 15;37(20):
pubmed: 30166454
Brain. 2019 Mar 1;142(3):512-525
pubmed: 30808022
Alzheimers Dement. 2015 Nov;11(11):1316-28
pubmed: 25676388
Front Pharmacol. 2012 Jun 11;3:108
pubmed: 22701425
Front Behav Neurosci. 2014 Aug 27;8:290
pubmed: 25221486
Psychopharmacology (Berl). 2009 Jan;202(1-3):307-13
pubmed: 18985321
Neuropsychopharmacology. 2013 Jul;38(8):1460-71
pubmed: 23399948
Handb Exp Pharmacol. 2009;(192):173-207
pubmed: 19184650
Exp Neurol. 2008 Jan;209(1):82-8
pubmed: 17963752
Science. 2010 Jul 30;329(5991):532
pubmed: 20671181
Psychopharmacology (Berl). 2006 Jul;187(1):73-85
pubmed: 16767417
Int Rev Neurobiol. 2017;133:679-717
pubmed: 28802938
Trends Neurosci. 2000 Oct;23(10 Suppl):S8-19
pubmed: 11052215
Mov Disord. 2015 Nov;30(13):1728-38
pubmed: 26207892
Endocrinology. 2012 Sep;153(9):4317-27
pubmed: 22778218
Trends Neurosci. 2017 Oct;40(10):592-602
pubmed: 28962801
Lancet Neurol. 2006 Nov;5(11):974-83
pubmed: 17052664
Eur J Neurosci. 2013 May;37(9):1519-28
pubmed: 23368520
Neural Plast. 2019 Mar 11;2019:6286197
pubmed: 30984255
Cell Rep. 2015 Oct 27;13(4):657-666
pubmed: 26489458
J Neurochem. 2008 Oct;107(2):385-97
pubmed: 18691381
Nat Rev Neurol. 2019 Jun;15(6):312-314
pubmed: 30948845
Arch Neurol. 2005 May;62(5):770-3
pubmed: 15883264
J Neurosci. 2013 May 8;33(19):8321-35
pubmed: 23658172
Psychopharmacology (Berl). 2011 Oct;217(4):455-73
pubmed: 21503608
Eur J Neurosci. 2018 Nov;48(9):2988-3004
pubmed: 30230645
Psychopharmacology (Berl). 2007 Apr;191(3):587-98
pubmed: 16972104
Prog Neurobiol. 2013 Sep;108:44-79
pubmed: 23856628
Science. 1997 Feb 7;275(5301):838-41
pubmed: 9012352
Neurobiol Dis. 2019 Dec;132:104568
pubmed: 31394203
CNS Neurosci Ther. 2010 Jun;16(3):137-62
pubmed: 20370804
J Neural Transm (Vienna). 2004 Mar;111(3):323-45
pubmed: 14991458
Geriatr Gerontol Int. 2010 Jul;10 Suppl 1:S148-57
pubmed: 20590830
Mov Disord. 2011 Dec;26(14):2496-503
pubmed: 21898597
Mol Ther. 2007 Jun;15(6):1106-13
pubmed: 17387333
Front Neuroanat. 2011 Feb 07;5:6
pubmed: 21344017
Nat Rev Neurosci. 2019 Nov;20(11):649-666
pubmed: 31582840
Nat Commun. 2019 Nov 21;10(1):5280
pubmed: 31754098
Mol Ther Methods Clin Dev. 2018 Mar 09;9:211-224
pubmed: 29766029
J Alzheimers Dis. 2015;43(3):763-74
pubmed: 25159665
Mov Disord. 2019 Feb;34(2):180-198
pubmed: 30653247
Nat Neurosci. 2018 Jan;21(1):72-80
pubmed: 29273772
Neurosci Res. 2007 Jul;58(3):305-16
pubmed: 17499375
Int Rev Neurobiol. 2018;141:211-250
pubmed: 30314597
Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2324-8
pubmed: 8134395
Front Neurol. 2020 Oct 07;11:557928
pubmed: 33117258
J Neurosci. 2013 Oct 16;33(42):16522-39
pubmed: 24133257
J Neurosci. 2019 Mar 13;39(11):2144-2156
pubmed: 30665947
Neuroscience. 1996 May;72(1):63-77
pubmed: 8730706
Cell Death Differ. 2019 Aug;26(8):1411-1427
pubmed: 30442948
Science. 2000 Oct 27;290(5492):767-73
pubmed: 11052933
Curr Top Behav Neurosci. 2020;47:3-22
pubmed: 32468496
Eur J Pharmacol. 1986 Dec 16;132(2-3):337-8
pubmed: 3816984
J Alzheimers Dis. 2015;43(3):1059-72
pubmed: 25147108
Nat Neurosci. 2011 Apr;14(4):417-9
pubmed: 21336271
J Neurosci. 2012 Aug 29;32(35):12115-28
pubmed: 22933795
Science. 2007 Mar 2;315(5816):1267-70
pubmed: 17332411
Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10898-902
pubmed: 7971980
Neurosci Biobehav Rev. 2011 May;35(6):1397-409
pubmed: 21392524
Cell Rep. 2016 May 17;15(7):1455-1466
pubmed: 27160897
Lancet Neurol. 2006 Mar;5(3):235-45
pubmed: 16488379
Trends Neurosci. 2012 Sep;35(9):557-64
pubmed: 22858522
Parkinsonism Relat Disord. 2016 Jan;22 Suppl 1:S144-8
pubmed: 26411499
Front Neural Circuits. 2017 Dec 22;11:110
pubmed: 29311846
Am J Psychiatry. 2001 Nov;158(11):1783-93
pubmed: 11691682
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3755-63
pubmed: 27274066
Neuropharmacology. 2014 Oct;85:121-30
pubmed: 24880087
Cell. 2010 Aug 6;142(3):387-97
pubmed: 20655099
Biol Psychiatry. 2016 Mar 1;79(5):402-414
pubmed: 26392130
Lancet. 1976 Dec 25;2(8000):1403
pubmed: 63862
Br Med J. 1978 Nov 25;2(6150):1457-9
pubmed: 719462
Transl Psychiatry. 2018 Dec 7;8(1):269
pubmed: 30531858
Mov Disord. 2016 Oct;31(10):1433-1443
pubmed: 27619535
Neural Plast. 2020 Nov 26;2020:8814028
pubmed: 33293946
Psychopharmacology (Berl). 1987;91(4):458-66
pubmed: 3108926
J Neurosurg. 2012 Aug;117(2):340-7
pubmed: 22655593
J Comp Neurol. 1994 Nov 1;349(1):148-64
pubmed: 7852623
Trends Neurosci. 2007 Oct;30(10):545-53
pubmed: 17904652
Neuropsychopharmacology. 2009 Jan;34(2):299-306
pubmed: 18580873
Arch Neurol. 1967 Aug;17(2):124-36
pubmed: 4382112
Neurochem Int. 2019 Jun;126:1-10
pubmed: 30825602
J Neurosci. 2016 Aug 31;36(35):9161-72
pubmed: 27581457
Psychopharmacology (Berl). 2002 Jul;162(2):129-37
pubmed: 12110990
J Neurosci. 2011 Jun 29;31(26):9760-71
pubmed: 21715641
J Cell Mol Med. 2008 Dec;12(6B):2525-32
pubmed: 19210753
J Neuropathol Exp Neurol. 2002 May;61(5):384-95
pubmed: 12025941
Neuropsychopharmacology. 2010 Jan;35(2):560-9
pubmed: 19847161

Auteurs

Marianne Amalric (M)

Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France.

Tommy Pattij (T)

Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands.

Ioannis Sotiropoulos (I)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.

Joana M Silva (JM)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.

Nuno Sousa (N)

ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.

Samira Ztaou (S)

Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France.
Department of Molecular Therapeutics, New York State Psychiatric Institute, Department of Psychiatry, Columbia University, New York, NY, United States.

Cristiano Chiamulera (C)

Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy.

Lars U Wahlberg (LU)

Gloriana Therapeutics, Inc., Warren, RI, United States.

Dwaine F Emerich (DF)

Independent Researcher, Glocester, RI, United States.

Giovanna Paolone (G)

Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy.

Classifications MeSH