Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior.

Albumin release behavior Chitosan nanogel Magnetic thermoresponsive nanogels Poly(N-vinyl caprolactam) Semi-IPN nanogels Target drug delivery

Journal

Progress in biomaterials
ISSN: 2194-0509
Titre abrégé: Prog Biomater
Pays: Germany
ID NLM: 101656983

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 02 05 2021
accepted: 12 07 2021
pubmed: 10 8 2021
medline: 10 8 2021
entrez: 9 8 2021
Statut: ppublish

Résumé

Magnetic thermoresponsive nanogels present a promising new approach for targeted drug delivery. In the present study, bovine serum albumin (BSA) loaded thermo-responsive magnetic semi-IPN nanogels (MTRSI-NGs) were developed. At first poly(N-vinyl caprolactam) (PNVCL) was synthesized by free radical polymerization and then MTRSI-NGs were prepared by crosslinking chitosan in presence of chitosan and Fe

Identifiants

pubmed: 34370266
doi: 10.1007/s40204-021-00161-8
pii: 10.1007/s40204-021-00161-8
pmc: PMC8511182
doi:

Types de publication

Journal Article

Langues

eng

Pagination

173-183

Informations de copyright

© 2021. Islamic Azad University.

Références

Abedini F, Ebrahimi M, Roozbehani AH, Domb AJ, Hosseinkhani H (2018) Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym Adv Tech 29(10):2564–2573. https://doi.org/10.1002/pat.4375
doi: 10.1002/pat.4375
Aguilar MR, San Román J (2019) Introduction to smart polymers and their applications. In: Aguilar MR, San Román J (eds) Smart polymers and their applications. Woodhead Publishing, Cambridge, pp 1–11
Alibolandi M, Abnous K, Sadeghi F, Hosseinkhani H, Ramezani M, Hadizadeh F (2016) Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: in vitro and in vivo evaluation. Int J Pharm 500(1–2):162–178. https://doi.org/10.1016/j.ijpharm.2016.01.040
doi: 10.1016/j.ijpharm.2016.01.040
Banihashem S, Nezhati MN, Panahia HA (2020) Synthesis of chitosan-grafted-poly (N-vinylcaprolactam) coated on the thiolated gold nanoparticles surface for controlled release of cisplatin. Carboh Polym 227:115333. https://doi.org/10.1016/j.carbpol.2019.115333
doi: 10.1016/j.carbpol.2019.115333
Bouillot P, Vincent B (2000) A comparison of the swelling behaviour of copolymer and interpenetrating network microgel particles. Colloid Polym Sci 278(1):74–79. https://doi.org/10.1007/s003960050012
doi: 10.1007/s003960050012
Butler IS, Gilson DF (2014) A theoretical investigation of the products in the Frankland reaction of dimethylzinc compounds with nitric oxide. Can J Chem 92(10):948–950. https://doi.org/10.1139/cjc-2014-0049
doi: 10.1139/cjc-2014-0049
Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657. https://doi.org/10.1016/j.biomaterials.2013.01.084
doi: 10.1016/j.biomaterials.2013.01.084
Cheng L, Bulmer C, Margaritis A (2015) Characterization of novel composite alginate chitosan–carrageenan nanoparticles for encapsulation of BSA as a model drug delivery system. Curr Drug Deliv 12(3):351–357
doi: 10.2174/1567201812666150114155948
Dinari A, Abdollahi M, Sadeghizadeh M (2021) Design and fabrication of dual responsive lignin- based nanogel via “grafting from” atom transfer radical polymerization for curcumin loading and release. Sci Rep 11(1):1–16. https://doi.org/10.1038/s41598-021-81393-3
doi: 10.1038/s41598-021-81393-3
Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157(2):168–182. https://doi.org/10.1016/j.jconrel.2011.07.031
doi: 10.1016/j.jconrel.2011.07.031
Fernández-Quiroz D, González-Gómez Á, Lizardi-Mendoza J, Vázquez-Lasa B, Goycoolea FM, San Román J, Argüelles-Monal WM (2015) Effect of the molecular architecture on the thermosensitive properties of chitosan-g-poly (N-vinylcaprolactam). Carbohyd Polym 134:92–101. https://doi.org/10.1016/j.carbpol.2015.07.069
doi: 10.1016/j.carbpol.2015.07.069
Gislén A, Dacke M, Kröger RH, Abrahamsson M, Nilsson DE, Warrant EJ (2003) Superior underwater vision in a human population of sea gypsies. Curr Biol 13(10):833–836. https://doi.org/10.1016/S0960-9822(03)00290-2
doi: 10.1016/S0960-9822(03)00290-2
He WJ, Hosseinkhani H, Hong PD, Chiang CH, Yu DS (2013) Magnetic nanoparticles for imaging technology. Int J Nanotech 10(10–11):930–944. https://doi.org/10.1504/IJNT.2013.058120
doi: 10.1504/IJNT.2013.058120
Huang Y, Yong P, Chen Y, Gao Y, Xu W, Lv Y, Yang L, Reis RL, Pirraco RP, Chen J (2017) Micellization and gelatinization in aqueous media of pH-and thermo-responsive amphiphilic ABC (PMMA 82-b-PDMAEMA 150-b-PNIPAM 65) triblock copolymer synthesized by consecutive RAFT polymerization. RSC Adv 7(46):28711–28722. https://doi.org/10.1039/C7RA04351A
doi: 10.1039/C7RA04351A
Karimzadeh I, Aghazadeh M, Doroudi T, Reza Ganjali M, Hossein Kolivand P (2017) Effective preparation, characterization and in situ surface coating of super paramagnetic Fe
doi: 10.2174/1573413713666161129160640
Kozanoǧlu S, Özdemir T, Usanmaz A (2011) Polymerization of N-vinylcaprolactam and characterization of poly (N-vinylcaprolactam). J Macromol Sci Part A 48(6):467–477. https://doi.org/10.1080/10601325.2011.573350
doi: 10.1080/10601325.2011.573350
Lee B, Jiao A, Yu S, You JB, Kim DH, Im SG (2013) Initiated chemical vapor deposition of thermoresponsive poly (N-vinylcaprolactam) thin films for cell sheet engineering. Acta Biomater 9(8):7691–7698. https://doi.org/10.1016/j.actbio.2013.04.049
doi: 10.1016/j.actbio.2013.04.049
Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YÁ, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotech 8(7):3247–3271. https://doi.org/10.1166/jnn.2008.399
doi: 10.1166/jnn.2008.399
Owens DE, Jian Y, Fang JE, Slaughter BV, Chen YH, Peppas NA (2007) Thermally responsive swelling properties of polyacrylamide/poly (acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40(20):7306–7310. https://doi.org/10.1021/ma071089x
doi: 10.1021/ma071089x
Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13(4):536–557. https://doi.org/10.18433/J3JC7C
doi: 10.18433/J3JC7C
Rao KM, Rao K, Ha CS (2016) Stimuli responsive poly (N-vinylcaprolactam) gels for biomedical applications. Gels 2(1):6. https://doi.org/10.3390/gels2010006
doi: 10.3390/gels2010006
Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
doi: 10.1016/j.progpolymsci.2006.06.001
Sadighian S, Hosseini-Monfared H, Rostamizadeh K, Hamidi M (2015) pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross-linking approach. Adv Pharm Bullet 5(1):115. https://doi.org/10.5681/apb.2015.016
doi: 10.5681/apb.2015.016
Sahu SK, Maiti S, Maiti TK, Ghosh SK, Pramanik P (2011) Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J Drug Target 19(2):104–113. https://doi.org/10.3109/10611861003733987
doi: 10.3109/10611861003733987
Sarkar D, El-Khoury J, Lopina ST, Hu J (2005) An effective method for preparing polymer nanocapsules with hydrophobic acrylic shell and hydrophilic interior by inverse emulsion radical polymerization. Macromolecules 38(20):8603–8605. https://doi.org/10.1021/ma050661m
doi: 10.1021/ma050661m
Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285(9):953–966. https://doi.org/10.1007/s00396-007-1667-z
doi: 10.1007/s00396-007-1667-z
Siirilä J, Karesoja M, Pulkkinen P, Malho JM, Tenhu H (2019) Soft poly (N- vinylcaprolactam) nanogels surface-decorated with AuNPs. Response to temperature, light, and RF-field. Euro Polym J 115:59–69. https://doi.org/10.1016/j.eurpolymj.2019.03.010
doi: 10.1016/j.eurpolymj.2019.03.010
Smith AA, Maikawa CL, Hernandez HL, Appel EA (2021) Controlling properties of thermogels by tuning critical solution behaviour of ternary copolymers. Polym Chem 12(13):1918–1923. https://doi.org/10.1039/D0PY01696A
doi: 10.1039/D0PY01696A
Ta RS, Pulat M (2012) 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. https://doi.org/10.1155/2012/313961
doi: 10.1155/2012/313961
Tong J, Anderson JL (1996) Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys J 70(3):1505–1513. https://doi.org/10.1016/S0006-3495(96)79712-6
doi: 10.1016/S0006-3495(96)79712-6
Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev Colum 99(11):3181–3198
doi: 10.1021/cr940351u
Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly (N-isopropylacrylamide), poly (N-vinylcaprolactam) and amphiphilically modified poly (N-vinylcaprolactam). Biomaterials 26(16):3055–3064. https://doi.org/10.1016/j.biomaterials.2004.09.008
doi: 10.1016/j.biomaterials.2004.09.008
Wang Y, Shim MS, Levinson NS, Sung HW, Xia Y (2014) Stimuli-responsive materials for controlled release of theranostic agents. Adv Funct Mater 24(27):4206–4220. https://doi.org/10.1002/adfm.201400279
doi: 10.1002/adfm.201400279
Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3(3):1215–1242. https://doi.org/10.3390/polym3031215
doi: 10.3390/polym3031215
Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly (ethylene oxide) and poly (2-oxazoline) s. Prog Polym Sci 37(5):686–714. https://doi.org/10.1016/j.progpolymsci.2011.10.002
doi: 10.1016/j.progpolymsci.2011.10.002
Yadav H, Karthikeyan C (2019) Natural polysaccharides: structural features and properties. In: Yadav H (ed) Polysaccharide carriers for drug delivery. Woodhead Publishing, Cambridge, pp 1–17
Zhao DL, Wang XX, Zeng XW, Xia QS, Tang JT (2009) Preparation and inductive heating property of Fe
doi: 10.1016/j.jallcom.2008.10.104
Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S (2013) Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 42(17):7421–7435. https://doi.org/10.1039/C3CS60094G
doi: 10.1039/C3CS60094G
Zuo Y, Kong M, Mu Y, Feng C, Chen X (2017) Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. Int J Biol Macromol 104:157–164. https://doi.org/10.1016/j.ijbiomac.2017.06.020
doi: 10.1016/j.ijbiomac.2017.06.020

Auteurs

Hamed Mohammad Gholiha (H)

Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Morteza Ehsani (M)

Department of polymer processing, Iran polymer and petrochemical institute (IPPI), Tehran, Iran. M.Ehsani@ippi.ac.ir.
Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran. M.Ehsani@ippi.ac.ir.

Ardeshir Saeidi (A)

Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Azam Ghadami (A)

Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Najmeh Alizadeh (N)

Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Classifications MeSH