Solar cell design using graphene-based hollow nano-pillars.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 Aug 2021
Historique:
received: 10 05 2021
accepted: 26 07 2021
entrez: 10 8 2021
pubmed: 11 8 2021
medline: 11 8 2021
Statut: epublish

Résumé

In this paper, the full solar spectrum coverage with an absorption efficiency above 96% is attained by shell-shaped graphene-based hollow nano-pillars on top of the refractory metal substrate. The material choice guarantees the high thermal stability of the device along with its robustness against harsh environmental conditions. To design the structure, constitutive parameters of graphene material in the desired frequency range are investigated and its absorption capability is illustrated by calculating the attenuation constant of the electromagnetic wave. It is observed that broadband absorption is a consequence of wideband retrieved surface impedance matching with the free-space intrinsic impedance due to the tapered geometry. Moreover, the azimuthal and longitudinal cavity resonances with different orders are exhibited for a better understanding of the underlying wideband absorption mechanism. Importantly, the device can tolerate the oblique incidence in a wide span around 65°, regardless of the polarization. The proposed structure can be realized by large-area fabrication techniques.

Identifiants

pubmed: 34373553
doi: 10.1038/s41598-021-95684-2
pii: 10.1038/s41598-021-95684-2
pmc: PMC8352917
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16169

Subventions

Organisme : Iran National Science Foundation
ID : 98012903

Informations de copyright

© 2021. The Author(s).

Références

Liang, H. et al. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renew. Sustain. Energy Rev. 141, 110785 (2021).
doi: 10.1016/j.rser.2021.110785
Krishnan, A., Das, S., Krishna, S. R. & Khan, M. Z. A. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells. Opt. Express 22, A800–A811 (2014).
pubmed: 24922387 doi: 10.1364/OE.22.00A800
Olaimat, M. M., Yousefi, L. & Ramahi, O. M. Using plasmonics and nanoparticles to enhance the efficiency of solar cells: Review of latest technologies. JOSA B 38, 638–651 (2021).
doi: 10.1364/JOSAB.411712
Akimov, Y. A. & Koh, W. S. Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6, 155–161 (2011).
doi: 10.1007/s11468-010-9181-4
Yang, Z., Gao, P., Zhang, C., Li, X. & Ye, J. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells. Sci. Rep. 6, 1–7 (2016).
Liang, Q., Duan, H., Zhu, X., Chen, X. & Xia, X. Solar thermal absorber based on dielectric filled two-dimensional nickel grating. Opt. Mater. Exp. 9, 3193–3203 (2019).
doi: 10.1364/OME.9.003193
Kim, I., So, S., Rana, A. S., Mehmood, M. Q. & Rho, J. Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics 7, 1827–1833 (2018).
doi: 10.1515/nanoph-2018-0095
Yu, P. et al. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 158, 227–235 (2020).
doi: 10.1016/j.renene.2020.05.142
Yu, P. et al. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 97, 109400 (2019).
doi: 10.1016/j.optmat.2019.109400
Ren, H. et al. Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion. Adv. Mater. 29, 1702590 (2017).
doi: 10.1002/adma.201702590
Lin, K.-T., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1–10 (2020).
Lin, S. S. et al. Stable 16.2% efficient surface plasmon-enhanced graphene/GaAs heterostructure solar cell. Adv. Energy Mater. 6, 1600822 (2016).
doi: 10.1002/aenm.201600822
Won, R. Photovoltaics: Graphene–silicon solar cells. Nat. Photonics 4, 411 (2010).
doi: 10.1038/nphoton.2010.140
Chen, X., Jia, B., Zhang, Y. & Gu, M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci. Appl. 2, e92 (2013).
doi: 10.1038/lsa.2013.48
Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 13, 270–276 (2019).
doi: 10.1038/s41566-019-0389-3
Das, S., Sudhagar, P., Kang, Y. S. & Choi, W. Graphene synthesis and application for solar cells. J. Mater. Res. 29, 299–319 (2014).
doi: 10.1557/jmr.2013.297
Xiong, H. & Yang, F. Ultra-broadband and tunable saline water-based absorber in microwave regime. Opt. Express 28, 5306–5316 (2020).
pubmed: 32121754 doi: 10.1364/OE.382719
You, X. et al. Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon. Opt. Lett. 45, 1196–1199 (2020).
pubmed: 32108804 doi: 10.1364/OL.382458
Dorche, A. E., Abdollahramezani, S., Chizari, A. & Khavasi, A. Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics. IEEE Photonics Technol. Lett. 28, 2545–2548 (2016).
doi: 10.1109/LPT.2016.2605503
Shen, Y. et al. Ultrabroadband terahertz absorption by uniaxial anisotropic nanowire metamaterials. IEEE Photonics Technol. Lett. 27, 2284–2287 (2015).
doi: 10.1109/LPT.2015.2461633
Dang, P. T. et al. Efficient broadband truncated-pyramid-based metamaterial absorber in the visible and near-infrared regions. Curr. Comput.-Aided Drug Des. 10, 784 (2020).
Liu, Z. et al. Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology 30, 305203 (2019).
pubmed: 30884474 doi: 10.1088/1361-6528/ab109d
Falkovsky, L. A. Optical properties of graphene and IV–VI semiconductors. Phys. Usp. 51, 887 (2008).
doi: 10.1070/PU2008v051n09ABEH006625
Vakil, A. Transformation optics using graphene: One-atom-thick optical devices based on graphene (2012).
Kravets, V. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010).
doi: 10.1103/PhysRevB.81.155413
Schedin, F. et al. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010).
pubmed: 20857921 doi: 10.1021/nn1010842
Xu, Q. & Huang, Y. Anechoic and reverberation chambers: Theory, design, and measurements (2019).
Pflüger, J. & Fink, J. Handbook of Optical Constants of Solids 293–311 (Elsevier, New York, 1997).
Pflüger, J., Fink, J., Weber, W., Bohnen, K. & Crecelius, G. Dielectric properties of TiC x, TiN x, VC x, and VN x from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phys. Rev. B 30, 1155 (1984).
doi: 10.1103/PhysRevB.30.1155
Wan, M. et al. Strong tunable absorption enhancement in graphene using dielectric-metal core-shell resonators. Sci. Rep. 7, 1–10 (2017).
Chirumamilla, M. et al. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. 5, 1700552 (2017).
doi: 10.1002/adom.201700552
Verre, R., Odebo Länk, N., Andrén, D., Šípová, H. & Käll, M. Large-scale fabrication of shaped high index dielectric nanoparticles on a substrate and in solution. Adv. Opt. Mater. 6, 1701253 (2018).
doi: 10.1002/adom.201701253
Hajati, M. & Hajati, Y. Plasmonic characteristics of two vertically coupled graphene-coated nanowires integrated with substrate. Appl. Opt. 56, 870–875 (2017).
pubmed: 28158087 doi: 10.1364/AO.56.000870
Chen, B. et al. Graphene coated ZnO nanowire optical waveguides. Opt. Express 22, 24276–24285 (2014).
pubmed: 25322002 doi: 10.1364/OE.22.024276
Huang, Z., Zhong, P., Wang, C., Zhang, X. & Zhang, C. Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties. ACS Appl. Mater. Interfaces 5, 1961–1966 (2013).
pubmed: 23432521 doi: 10.1021/am3027458
Cai, D. et al. Facile synthesis of ultrathin-shell graphene hollow spheres for high-performance lithium-ion batteries. Electrochim. Acta 139, 96–103 (2014).
doi: 10.1016/j.electacta.2014.07.014
Raad, S. H. & Atlasbaf, Z. Broadband continuous/discrete spectrum optical absorber using graphene-wrapped fractal oligomers. Opt. Express 28, 18049–18058 (2020).
pubmed: 32680006 doi: 10.1364/OE.396500
Aalizadeh, M., Khavasi, A., Serebryannikov, A. E., Vandenbosch, G. A., & Ozbay, E. A route to unusually broadband plasmonic absorption spanning from visible to mid-infrared. Plasmonics 14(5), 1269-1281 (2019).
doi: 10.1007/s11468-019-00916-x
Ozel, T. et al. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett. 17, 4502–4507 (2017).
pubmed: 28621537 doi: 10.1021/acs.nanolett.7b01950
Fallahzadeh, S., Forooraghi, K. & Atlasbaf, Z. Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber. Prog. Electromagn. Res. Lett. 35, 135–144 (2012).
doi: 10.2528/PIERL12071606
Yang, B., Wu, T., Yang, Y. & Zhang, X. Tunable subwavelength strong absorption by graphene wrapped dielectric particles. J. Opt. 17, 035002 (2015).
doi: 10.1088/2040-8978/17/3/035002
Huang, Q. et al. Hollow carbon nanospheres with extremely small size as anode material in lithium-ion batteries with outstanding cycling stability. J. Phys. Chem. C 120, 3139–3144 (2016).
doi: 10.1021/acs.jpcc.5b10455
Liu, T., Zhang, L., Cheng, B. & Yu, J. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv. Energy Mater. 9, 1803900 (2019).
doi: 10.1002/aenm.201803900
Shao, Q. et al. Synthesis and characterization of graphene hollow spheres for application in supercapacitors. J. Mater. Chem. A 1, 15423–15428 (2013).
doi: 10.1039/c3ta12789c
Thangavel, R. et al. Highly interconnected hollow graphene nanospheres as an advanced high energy and high power cathode for sodium metal batteries. J. Mater. Chem. A 6, 9846–9853 (2018).
doi: 10.1039/C8TA00153G
Zhu, X. et al. Enhanced light–matter interactions in graphene-covered gold nanovoid arrays. Nano Lett. 13, 4690–4696 (2013).
pubmed: 24010940 doi: 10.1021/nl402120t
Nakamura, Y., Toma, M. & Kajikawa, K. A visible and near-infrared broadband light absorber of cone-shaped metallic cavities. Appl. Phys. Express 13, 062001 (2020).
doi: 10.35848/1882-0786/ab8964
Zagaglia, L., Demontis, V., Rossella, F. & Floris, F. Semiconductor nanowire arrays for optical sensing: A numerical insight on the impact of array periodicity and density. Nanotechnology 32, 335502 (2021).
doi: 10.1088/1361-6528/abff8b
Floris, F. et al. Strong modulations of optical reflectance in tapered core-shell nanowires. Materials 12, 3572 (2019).
pmcid: 6862277 doi: 10.3390/ma12213572
Floris, F. et al. Self-assembled InAs nanowires as optical reflectors. Nanomaterials 7, 400 (2017).
pmcid: 5707617 doi: 10.3390/nano7110400
Demontis, V., Marini, A., Floris, F., Sorba, L. & Rossella, F. in AIP Conference Proceedings. 020009 (AIP Publishing LLC).
https://www.3ds.com/products-services/simulia/products/cst-studio-suite .

Auteurs

Shiva Hayati Raad (SH)

Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran. shiva.hayati@modares.ac.ir.

Zahra Atlasbaf (Z)

Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.

Classifications MeSH