PIWI proteins and piRNAs in cervical cancer: a propitious dart in cancer stem cell-targeted therapy.


Journal

Human cell
ISSN: 1749-0774
Titre abrégé: Hum Cell
Pays: Japan
ID NLM: 8912329

Informations de publication

Date de publication:
Nov 2021
Historique:
received: 07 06 2021
accepted: 02 08 2021
pubmed: 11 8 2021
medline: 27 1 2022
entrez: 10 8 2021
Statut: ppublish

Résumé

Any form of cancer is a result of uncontrolled cell growth caused by mutations and/or epigenetic alterations, implying that a balance of chromatin remodeling activities and epigenetic regulators is crucial to prevent the transformation of a normal cell to a cancer cell. Many of the chromatin remodelers do not recognize any specific sites on their targets and require guiding molecules to reach the respective targets. PIWI proteins and their interacting small non-coding RNAs (piRNAs) have proved to act as a guiding signal for such molecules. While epigenetic alterations lead to tumorigenesis, the stemness of cancer cells contributes to recurrence and metastasis of cancer. Various studies have propounded that the PIWI-piRNA complex also promotes stemness of cancer cells, providing new doors for target-mediated anti-cancer therapies. Despite the progress in diagnosis and development of vaccines, cervical cancer remains to be the second most prevalent cancer among women, due to the lack of cost-effective and accessible diagnostic and prevention methods. With the emergence of liquid biopsy, there is a significant demand for the ideal biomarker in the diagnosis of cancer. PIWI and piRNAs have been recommended to serve as prognostic and diagnostic markers, to differentiate early and later stages of cancer, including cervical cancer. This review discusses how PIWIs and piRNAs are involved in disease progression as well as their potential role in diagnostics and therapeutics in cervical cancer.

Identifiants

pubmed: 34374035
doi: 10.1007/s13577-021-00590-4
pii: 10.1007/s13577-021-00590-4
doi:

Substances chimiques

Argonaute Proteins 0
Biomarkers, Tumor 0
PIWIL1 protein, human 0
RNA, Small Untranslated 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1629-1641

Informations de copyright

© 2021. Japan Human Cell Society.

Références

Brisson M, Kim JJJ, Canfell K, Drolet M, Gingras G, Burger EAA, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet. 2020;395:575–90.
pubmed: 32007141 pmcid: 7043009 doi: 10.1016/S0140-6736(20)30068-4
World Health Organization. Human papillomavirus (HPV) and cervical cancer. 2019 [cited 2020 Jul 30]. Available from: https://www.who.int/health-topics/cervical-cancer#tab=tab_1 .
American Cancer Society. About Cervical Cancer. Available from: https://www.cancer.org/about-us/online-help/contact-us.html .
Feng D, Yan K, Zhou Y, Liang H, Liang J, Zhao W, et al. PIWIl2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis. Oncol Rep. 2016;7:64575–88.
Small W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a global health crisis. Cancer. 2017;123:2404–12.
pubmed: 28464289 doi: 10.1002/cncr.30667
Koutsky LA, Galloway DAHKK. Epidemiology of genital human papillomavirus infection. Epidemiol Rev. 1988;10:122–63.
pubmed: 2852116 doi: 10.1093/oxfordjournals.epirev.a036020
Chan CK, Aimagambetova G, Ukybassova T, Kongrtay K, Azizan A. Human Papillomavirus infection and cervical cancer: epidemiology, screening, and vaccination - review of current perspectives. J Oncol. 2019;2019:1–11.
doi: 10.1155/2019/3257939
Al Khudairi H, Abu-Zaid A, Alomar O, Salem H. public awareness and knowledge of pap smear as a screening test for cervical cancer among Saudi population in Riyadh city. Cureus. 2017;9:1–8.
Nour NMM. Cervical cancer: a preventable death. Rev Obstet Gynecol. 2009;2:240–4.
pubmed: 20111660 pmcid: 2812875
Manji M. Cervical cancer screening program in Saudi Arabia: Action is overdue. Ann Saudi Med. 2000;20:355–7.
pubmed: 17264620 doi: 10.5144/0256-4947.2000.355
Sudhalkar N, Rathod NPP, Mathews A, Chopra S, Sriram H, Shrivastava SKK, et al. Potential role of cancer stem cells as biomarkers and therapeutic targets in cervical cancer. Cancer Rep. 2019;2:e1144.
doi: 10.1002/cnr2.1144
Zhou BBS, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8:806–23.
pubmed: 19794444 doi: 10.1038/nrd2137
Mahipal V, Suraneni MDB, Suraneni MV, Badeaux MD, Mahipal V, Suraneni MDB. Tumor-initiating cells, cancer metastasis and therapeutic implications. Jandial R, editor. Madame Curie Biosci. Database. Austin (TX): Landes Bioscience; 2013 [cited 2020 Sep 22].
Paldino E, Tesori V, Casalbore P, Gasbarrini A, Puglisi MA. Tumor initiating cells and chemoresistance: Which is the best strategy to target colon cancer stem cells? Biomed Res Int. 2014;2014:859871.
pubmed: 24527460 pmcid: 3914574 doi: 10.1155/2014/859871
Khandekar D, Amara S, Tiriveedhi V. Immunogenicity of tumor initiating stem cells: Potential applications in novel anticancer therapy. Front Oncol. 2019;9:1–10.
doi: 10.3389/fonc.2019.00315
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, et al. The emerging role of the piRNA/PIWI complex in cancer. Mol Cancer Mol Cancer. 2019;18:1–15.
pubmed: 30609930 doi: 10.1186/s12943-018-0930-x
Cox DNN, Chao A, Baker J, Chang L, Qiao D, Lin H. A novel class of evolutionarily conserved genes defined by PIWI are essential for stem cell self-renewal. Genes Dev. 1998;12:3715–27.
pubmed: 9851978 pmcid: 317255 doi: 10.1101/gad.12.23.3715
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: New insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012;26:2361–73.
pubmed: 23124062 pmcid: 3489994 doi: 10.1101/gad.203786.112
Litwin M, Szczepańska-Buda A, Piotrowska A, Dzięgiel P, Witkiewicz W. The meaning of PIWI proteins in cancer development (Review). Oncol Lett . 2017;13:3354–62.
pubmed: 28529570 pmcid: 5431467 doi: 10.3892/ol.2017.5932
Cox DNN, Chao A, Lin H. PIWI encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development. 2000;127:503–14.
pubmed: 10631171 doi: 10.1242/dev.127.3.503
Brennecke J, Aravin AAA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in drosophila. Cell. 2007;128:1089–103.
pubmed: 17346786 doi: 10.1016/j.cell.2007.01.043
Yuan S, Tang C, Schuster A, Zhang Y, Zheng H, Yan W. Paternal pachytene piRNAs are not required for fertilization, embryonic development and sperm-mediated epigenetic inheritance in mice. Environ Epigenet. 2016;2:dvw021.
Kowalczykiewicz D, Pawlak P, Lechniak D, Wrzesinski J. Altered Expression of Porcine PIWI Genes and piRNA during Development. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0043816 .
doi: 10.1371/journal.pone.0043816 pubmed: 22952772 pmcid: 3431407
Deng W, Lin H. miwi, a murine homolog of PIWI, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell. 2002;2:819–30.
pubmed: 12062093 doi: 10.1016/S1534-5807(02)00165-X
Grimson A, Srivastava M, Fahey B, Woodcroft BJJ, Chiang HRR, King N, et al. Early origins and evolution of microRNAs and PIWI-interacting RNAs in animals. Nature. 2008;455:1193–7.
pubmed: 18830242 doi: 10.1038/nature07415
Mei Y, Clark D, Mao L. Novel dimensions of piRNAs in cancer. Cancer Lett . 2013;336:46–52.
pubmed: 23603435 pmcid: 3707114 doi: 10.1016/j.canlet.2013.04.008
Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, et al. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer. 2006;118:1922–9.
pubmed: 16287078 doi: 10.1002/ijc.21575
Kwon C, Tak H, Rho M, Chang HR, Kim YH, Kim KT, et al. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun. 2014;446:218–23.
pubmed: 24602614 doi: 10.1016/j.bbrc.2014.02.112
Liu JJJ, Shen R, Chen L, Ye Y, He G, Hua K, et al. PIWIl2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker. Int J Clin Exp Pathol. 2010;3:328–37.
pubmed: 20490325 pmcid: 2872741
Gunawardane LSS, Saito K, Nishida KMM, Miyoshi K, Kawamura Y, Nagami T, et al. A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science (80-). 2007;315:1587 LP – 90.
doi: 10.1126/science.1140494
Saito K. The epigenetic regulation of transposable elements by PIWI-interacting RNAs in Drosophila. Genes Genet Syst. 2013;88:9–17.
pubmed: 23676706 doi: 10.1266/ggs.88.9
Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009;25:355–76.
pubmed: 19575643 pmcid: 2780330 doi: 10.1146/annurev.cellbio.24.110707.175327
Wang G, Reinke VAC. elegans PIWI, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol. 2008;18:861–7.
pubmed: 18501605 pmcid: 2494713 doi: 10.1016/j.cub.2008.05.009
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. A Role for PIWI and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell. 2007;129:69–82.
pubmed: 17418787 doi: 10.1016/j.cell.2007.03.026
Houwing S, Berezikov E, Ketting RFF. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J. 2008;27:2702–11.
pubmed: 18833190 pmcid: 2572183 doi: 10.1038/emboj.2008.204
Tolia NHH, Joshua-Tor L. Slicer and the argonautes. Nat Chem Biol. 2007;3:36–43.
pubmed: 17173028 doi: 10.1038/nchembio848
Iwasaki YW, Siomi MC, Siomi H. PIWI-interacting RNA: Its biogenesis and functions. Annu Rev Biochem . 2015;84:405–33.
pubmed: 25747396 doi: 10.1146/annurev-biochem-060614-034258
Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20:89–108.
pubmed: 30446728 doi: 10.1038/s41576-018-0073-3
Ji L, Chen X. Regulation of small RNA stability: Methylation and beyond. Cell Res . 2012;22:624–36.
pubmed: 22410795 pmcid: 3317568 doi: 10.1038/cr.2012.36
Zuo L, Wang Z, Tan Y, Chen X, Luo X. piRNAs and their functions in the brain. Int J Hum Genet . 2016;16:53–60.
pubmed: 27512315 pmcid: 4976825 doi: 10.1080/09723757.2016.11886278
Krishnan P, Damaraju S. piRNAs in the pathophysiology of disease and potential clinical applications. Mallick BBT-A-DN-CRna, editor. AGO-Driven Non-Coding RNAs. Elsevier Inc.; 2019.
Czech B, Hannon GJ. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci . 2016;41:324–37.
pubmed: 26810602 pmcid: 4819955 doi: 10.1016/j.tibs.2015.12.008
Weng W, Li H, Goel A. PIWI-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta - Rev Cancer. 2019;1871:160–9.
pubmed: 30599187 doi: 10.1016/j.bbcan.2018.12.005
Yu Y, Xiao J, Hann SS. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag Res. 2019;11:5895–909.
pubmed: 31303794 pmcid: 6612017 doi: 10.2147/CMAR.S209300
Colin D, Malone GJH, Malone CD, Hannon GJ, Colin D. Malone GJH. Small RNAs as guardians of the genome. Cell. 2009;136:656-68.
doi: 10.1016/j.cell.2009.01.045
Keam SP, Young PE, McCorkindale AL, Dang THY, Clancy JL, Humphreys DT, et al. The human PIWI protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells. Nucleic Acids Res. 2014;42:8984–95.
pubmed: 25038252 pmcid: 4132735 doi: 10.1093/nar/gku620
La GA, Scarafía MA, Cañás MCH, Pérez N, Castañeda S, Colli C, et al. PIWI-interacting RNAs are differentially expressed during cardiac differentiation of human pluripotent stem cells. PLoS One. 2020;15:1–21.
doi: 10.1371/journal.pone.0227190
Vella S, Gallo A, Antonio LN, Daniele G, Giuseppe Maria R, Michele P, et al. PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol. 2016;76:1–11.
pubmed: 27131603 doi: 10.1016/j.biocel.2016.04.012
Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KSS, Pikor LA, et al. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep Nature . 2015;5:1–17.
Wang S, Wang Z, Tao R, He G, Liu J, Li C, et al. The potential use of PIWI-interacting RNA biomarkers in forensic body fluid identification: A proof-of-principle study. Forensic Sci Int Genet . 2019;39:129–35.
pubmed: 30640084 doi: 10.1016/j.fsigen.2019.01.002
Jain G, Stuendl A, Rao P, Berulava T, Pena Centeno T, Kaurani L, et al. A combined miRNA–piRNA signature to detect Alzheimer’s disease. Transl Psychiatry. 2019;9:250.
pubmed: 31591382 pmcid: 6779890 doi: 10.1038/s41398-019-0579-2
Stuwe E, Tóth KF, Aravin AA. Small but sturdy: Small RNAs in cellular memory and epigenetics. Genes Dev. 2014;28:423–31.
pubmed: 24589774 pmcid: 3950340 doi: 10.1101/gad.236414.113
Guo B, Li D, Du L, Zhu X. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 2020;39:567–75.
pubmed: 31960205 doi: 10.1007/s10555-020-09863-0
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018;10:1–24.
doi: 10.1177/1758835918794630
Perspective A-P. The future of liquid biopsy. Nature. 2020;579:S9.
doi: 10.1038/d41586-020-00844-5
Filant J, Nejad P, Paul A, Simonson B, Srinivasan S, Zhang X, et al. Isolation of Extracellular RNA from Serum/Plasma BT - Extracellular RNA: Methods and Protocols. In: Patel T, editor. New York: Springer 2018. p. 43–57.
El-Mogy M, Lam B, Haj-Ahmad TA, McGowan S, Yu D, Nosal L, et al. Diversity and signature of small RNA in different bodily fluids using next generation sequencing. BMC Genom . 2018;19:1–24.
doi: 10.1186/s12864-018-4785-8
Yang X, Cheng Y, Lu Q, Wei J, Yang H, Gu M. Detection of stably expressed piRNAs in human blood. Int J Clin Exp Med. 2015;8:13353–8.
pubmed: 26550265 pmcid: 4612950
Iliev R, Fedorko M, MacHackova T, Mlcochova H, Svoboda M, Pacik D, et al. Expression levels of PIWI-interacting RNA, piR-823, are deregulated in tumor tissue, blood serum and urine of patients with renal cell carcinoma. Anticancer Res. 2016;36:6419–23.
pubmed: 27919963 doi: 10.21873/anticanres.11239
Li B, Hong J, Hong M, Wang Y, Yu T, Zang S, et al. piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene. 2019;38:5227–38.
pubmed: 30890754 doi: 10.1038/s41388-019-0788-4
Vychytilova-Faltejskova P, Stitkovcova K, Radova L, Sachlova M, Kosarova Z, Slaba K, et al. Circulating PIWI-interacting RNAs piR-5937 and piR-28876 are promising diagnostic biomarkers of colon cancer. Cancer Epidemiol Biomarkers Prev. 2018;27:1019–28.
pubmed: 29976566 doi: 10.1158/1055-9965.EPI-18-0318
Qiao D, Zeeman AM, Deng W, Looijenga LHL. Lin H Molecular characterization of hiwi, a human member of the PIWI gene family whose overexpression is correlated to seminomas. Oncogene. 2002;21:3988–99.
pubmed: 12037681 doi: 10.1038/sj.onc.1205505
Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science (80-). 2010;330:1824.
doi: 10.1126/science.1195481
Sun G, Wang Y, Sun L, Luo H, Liu N, Fu Z, et al. Clinical significance of Hiwi gene expression in gliomas. Brain Res. 2011;1373:183–8.
pubmed: 21138738 doi: 10.1016/j.brainres.2010.11.097
Liu WKK, Jiang XYY, Zhang ZXX. Expression of PSCA, PIWIL1 and TBX2 and its correlation with HPV16 infection in formalin-fixed, paraffin-embedded cervical squamous cell carcinoma specimens. Arch Virol. 2010;155:657–63.
pubmed: 20229117 doi: 10.1007/s00705-010-0635-y
Liu W, Gao Q, Chen K, Xue X, Li M, Chen Q, et al. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncol Rep. 2014;32:1853–60.
pubmed: 25119492 doi: 10.3892/or.2014.3401
Li C, Zhou X, Chen J, Lu Y, Sun Q, Tao D, et al. PIWIL1 destabilizes microtubule by suppressing phosphorylation at Ser16 and RLIM-mediated degradation of stathmin1. Oncotarget. 2015;6:27794–804.
pubmed: 26317901 pmcid: 4695026 doi: 10.18632/oncotarget.4533
Tan Y, Liu L, Liao M, Zhang C, Hu S, Zou M, et al. Emerging roles for PIWI proteins in cancer. Acta Biochim Biophys Sin (Shanghai). 2015;47:315–24.
pubmed: 25854579 doi: 10.1093/abbs/gmv018
Pei G, Li B, Ma A. Suppression of Hiwi inhibits the growth and epithelial-mesenchymal transition of cervical cancer cells. Oncol Lett . 2018;16:3874–80.
pubmed: 30128001 pmcid: 6096176
Feng D, Peng C, Li C, Zhou Y, Li M, Ling B, et al. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol Rep. 2009;22:1129–34.
pubmed: 19787230
He Gang, Chen Li, Ye Yin, Xiao Yi, Hua Keding, Jarjoura David, Nakano Toru. Sanford H Barsky, Rulong Shen J-XGG PIWIl2 expressed in various stages of cervical neoplasia is a potential complementary marker for p16INK4a. Am J Transl Res. 2010;2:156–69.
pubmed: 20407605 pmcid: 2855633
Yao Y, Li C, Zhou X, Zhang Y, Lu Y, Chen J, et al. PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation. Oncol Rep. 2014;5:8466–77.
Lu Y, Zhang K, Li C, Yao Y, Tao D, Liu Y, et al. PIWIl2 suppresses P53 by inducing phosphorylation of signal transducer and activator of transcription 3 in tumor cells. PLoS One. 2012;7: e30999.
pubmed: 22303479 pmcid: 3267750 doi: 10.1371/journal.pone.0030999
Ling W, Zhigang H, Tian H, Bin Z, Xiaolin X, Hongxiu Z. HPV 16 infection up-regulates PIWIl2, which affects cell proliferation and invasion in cervical cancer by regulating MMP-9 via the MAPK pathway. Eur J Gynaecol Oncol. 2015;36:647–54.
pubmed: 26775345
Dingqing Feng, Keqin Yan, Xiao Zhang. The role of PIWIl2 in regulating the malignant process of cervical cancer. China Oncol. 2017;27:921–7.
Ye Y, Yin DTT, Chen L, Zhou Q, Shen R, He G, et al. Identification of PIWIl2-like (PL2L) proteins that promote tumorigenesis. PLoS One. 2010;5: e13406.
pubmed: 20975993 pmcid: 2958115 doi: 10.1371/journal.pone.0013406
Su C, Ren ZJ, Wang F, Liu M, Li X, Tang H. PIWIL4 regulates cervical cancer cell line growth and is involved in down-regulating the expression of p14ARF and p53. FEBS Lett. 2012;586:1356–62.
pubmed: 22483988 doi: 10.1016/j.febslet.2012.03.053
Lu Y, Li C, Zhang K, Sun H, Tao D, Liu Y, et al. Identification of piRNAs in Hela cells by massive parallel sequencing. BMB Rep. 2010;43:635–41.
pubmed: 20846497 doi: 10.5483/BMBRep.2010.43.9.635
Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H, et al. PiRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta. 2011;412:1621–5.
pubmed: 21616063 doi: 10.1016/j.cca.2011.05.015
Yang T, Rycaj K. Targeted therapy against cancer stem cells (review). Oncol Lett. 2015;10:27–33.
pubmed: 26170972 pmcid: 4486888 doi: 10.3892/ol.2015.3172
Qureshi-Baig K, Ullmann P, Haan S, Letellier E. Tumor-Initiating Cells: A criTICal review of isolation approaches and new challenges in targeting strategies. Mol Cancer . 2017;16:1–16.
doi: 10.1186/s12943-017-0602-2
Shibata M, Hoque MO. Targeting cancer stem cells: A strategy for effective eradication of cancer. Cancers (Basel). 2019;11:732.
doi: 10.3390/cancers11050732
Fathizadeh H, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in lung cancer. Cell Biosci . 2019;9:1–8.
doi: 10.1186/s13578-019-0368-x
Siddiqi S, Matushansky I. PIWIs and PIWI-interacting RNAs in the epigenetics of cancer. J Cell Biochem. 2012;113:373–80.
pubmed: 21928326 doi: 10.1002/jcb.23363
Watanabe T, Lin H. Posttranscriptional regulation of gene expression by PIWI proteins and piRNAs. Mol Cell. 2014;56:18–27.
pubmed: 25280102 pmcid: 4185416 doi: 10.1016/j.molcel.2014.09.012
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang L, et al. PiRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia. 2015;29:196–206.
pubmed: 24732595 doi: 10.1038/leu.2014.135
Ai L, Mu S, Sun C, Fan F, Yan H, Qin Y, et al. Myeloid-derived suppressor cells endow stem-like qualities to multiple myeloma cells by inducing piRNA-823 expression and DNMT3B activation. Mol Cancer. 2019;18:1–12.
doi: 10.1186/s12943-019-1011-5
Wang Q-E, Han C, Milum K, Wani AAA. Stem cell protein PIWIl2 modulates chromatin modifications upon cisplatin treatment. Mutat Res Mol Mech Mutagen. 2011;708:59–68.
doi: 10.1016/j.mrfmmm.2011.02.001
Wang Y, Gable T, Ma MZZ, Clark D, Zhao J, Zhang Y, et al. A piRNA-like small RNA induces chemoresistance to cisplatin-based therapy by inhibiting apoptosis in lung squamous cell carcinoma. Mol Ther Nucleic acids. 2017;6:269–78.
pubmed: 28325293 pmcid: 5363509 doi: 10.1016/j.omtn.2017.01.003
Wang X, Sun S, Tong X, Ma Q, Di H, Fu T, et al. MiRNA-154-5p inhibits cell proliferation and metastasis by targeting PIWIL1 in glioblastoma. Brain Res. 2017;1676:69–76.
pubmed: 28842123 doi: 10.1016/j.brainres.2017.08.014
Lee YJYS, Moon SU, Park MG, Jung WY, Park YK, Song SK, et al. Multiplex bioimaging of piRNA molecular pathway-regulated theragnostic effects in a single breast cancer cell using a piRNA molecular beacon. Biomaterials. 2016;101:143–55.
pubmed: 27289065 doi: 10.1016/j.biomaterials.2016.05.052
Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z, et al. PiR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett. 2012;315:12–7.
pubmed: 22047710 doi: 10.1016/j.canlet.2011.10.004
Tan L, Mai D, Zhang B, Jiang X, Zhang J, Bai R, et al. PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer . 2019;18:1–15.
doi: 10.1186/s12943-019-0940-3
Jacobs DI, Qin Q, Fu A, Chen Z, Zhou J, Zhu Y. piRNA-8041 is downregulated in human glioblastoma and suppresses tumor growth in vitro and in vivo. Oncotarget. 2018;9:37616–26.
pubmed: 30701019 pmcid: 6340885 doi: 10.18632/oncotarget.26331
Assumpção CB, Calcagno DQ, Araújo TMT, Batista Dos Santos SE, Ribeiro Dos Santos ÂKC, Riggins GJ, et al. The role of piRNA and its potential clinical implications in cancer. Epigenomics. 2015;7:975–84.
Han YNY-N, Li Y, Xia SQS-Q, Zhang Y-YYY, Zheng JHJ-HJH, Li W. PIWI Proteins and PIWI-Interacting RNA: Emerging Roles in Cancer. Cell Physiol Biochem. 2017;44:1–20.

Auteurs

Midhunaraj Kunnummal (M)

Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India.
Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India.

Mary Angelin (M)

Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India.

Ani V Das (AV)

Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India. anivdas@rgcb.res.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH