Photothermal-Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper.

large scale application multifunctional bilayer paper photocatalysis photothermal triphase system

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
11 Oct 2021
Historique:
received: 02 08 2021
pubmed: 11 8 2021
medline: 11 8 2021
entrez: 10 8 2021
Statut: ppublish

Résumé

Photocatalysis as one of the future environment technologies has been investigated for decades. Despite great efforts in catalyst engineering, the widely used powder dispersion and photoelectrode systems are still restricted by sluggish interfacial mass transfer and chemical processes. Here we develop a scalable bilayer paper from commercialized TiO

Identifiants

pubmed: 34374187
doi: 10.1002/anie.202110336
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22963-22969

Subventions

Organisme : national key projects for fundamental research and development of china
ID : 2018YFB1502002
Organisme : national natural science foundation of china
ID : 51825205, 51772305
Organisme : national natural science foundation of china
ID : 21902168
Organisme : natural science foundation of beijing municipality
ID : 2191002
Organisme : strategic priority research program of the chinese academy of sciences
ID : XDB17000000
Organisme : royal society-newton advanced fellowship
ID : NA170422
Organisme : international partnership program of chinese academy of sciences
ID : GJHZ201974
Organisme : youth innovation promotion association of the chinese academy of sciences

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

 
V. K. Sharma, R. Zboril, R. S. Varma, Acc. Chem. Res. 2015, 48, 182-191;
M. J. Klemes, L. P. Skala, M. Ateia, B. Trang, D. E. Helbling, W. R. Dichtel, Acc. Chem. Res. 2020, 53, 2314-2324;
K. M. M. Pärnänen, C. N. D. Rocha, D. Kneis, T. U. Berendonk, D. Cacace, T. T. Do, C. Elpers, D. F. Kassinos, I. Henriques, T. Jaeger, A. Karkman, J. L. Martinez, S. G. Michael, I. M. Kordatou, K. O. Sullivan, S. R. Mozaz, T. Schwartz, H. Sheng, H. Sørum, R. D. Stedtfeld, J. M. Tiedje, S. V. D. Giustina, F. Walsh, I. V. Moreira, M. Virta, C. M. Manaia, Sci. Adv. 2019, 5, eaau9124.
 
A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278;
Y. Li, W. Cui, L. Liu, R. Zong, W. Yao, Y. Liang, Y. Zhu, Appl. Catal. B 2016, 199, 412-423;
P. V. Kamat, ACS Energy Lett. 2017, 2, 1586-1587;
K.-i. Katsumata, C. E. J. Cordonier, T. Shichi, A. Fujishima, J. Am. Chem. Soc. 2009, 131, 3856-3857.
 
Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302-11336;
W. Wang, M. O. Tade, Z. Shao, Chem. Soc. Rev. 2015, 44, 5371-5408;
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69-96;
S. Ghosh, N. A. Kouame, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, P. Beaunier, F. Goubard, P. H. Aubert, H. Remita, Nat. Mater. 2015, 14, 505-511;
C. Liu, D. Kong, P. C. Hsu, H. Yuan, H. W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm, Y. Cui, Nat. Nanotechnol. 2016, 11, 1098-1104.
 
S. Chen, H. Wang, Z. Kang, S. Jin, X. Zhang, X. Zheng, Z. Qi, J. Zhu, B. Pan, Y. Xie, Nat. Commun. 2019, 10, 788;
R. Dittmeyer, M. Klumpp, P. Kant, G. Ozin, Nat. Commun. 2019, 10, 1818;
W. Fan, B. Zhang, X. Wang, W. Ma, D. Li, Z. Wang, M. Dupuis, J. Shi, S. Liao, C. Li, Energy Environ. Sci. 2020, 13, 238-245;
R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2017, 139, 4486-4492.
 
A. Li, Q. Cao, G. Zhou, B. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 2019, 58, 14549-14555;
Angew. Chem. 2019, 131, 14691-14697;
L. Chen, X. Feng, Chem. Sci. 2020, 11, 3124-3131;
Y. Wang, R. Shi, L. Shang, G. I. N. Waterhouse, J. Zhao, Q. Zhang, L. Gu, T. Zhang, Angew. Chem. Int. Ed. 2020, 59, 13057-13062;
Angew. Chem. 2020, 132, 13157-13162;
J. Li, G. X. Chen, Y. Y. Zhu, Z. Liang, A. Pei, C. L. Wu, H. X. Wang, H. R. Lee, K. Liu, S. Chu, Y. Cui, Nat. Catal. 2018, 1, 592-600.
 
X. Sheng, Z. Liu, R. Zeng, L. Chen, X. Feng, L. Jiang, J. Am. Chem. Soc. 2017, 139, 12402-12405;
H. Zhou, X. Sheng, J. Xiao, Z. Ding, D. Wang, X. Zhang, J. Liu, R. Wu, X. Feng, L. Jiang, J. Am. Chem. Soc. 2020, 142, 2738-2743.
 
Q. Shi, J. Ye, Angew. Chem. Int. Ed. 2020, 59, 4998-5001;
Angew. Chem. 2020, 132, 5030-5033;
R. Feng, W. Lei, G. Liu, M. Liu, Adv. Mater. 2018, 30, 1804770.
 
A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 2019, 31, 1807660;
Q. Guo, Z. Ma, C. Zhou, Z. Ren, X. Yang, Chem. Rev. 2019, 119, 11020-11041;
S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372-7408;
Angew. Chem. 2013, 125, 7516-7557.
 
D. Li, J. C.-C. Yu, V.-H. Nguyen, J. C. S. Wu, X. Wang, Appl. Catal. B 2018, 239, 268-279;
Z. Mo, K. Wang, H. Yang, Z. Ou, Y. Tong, T. Yu, Y. Wang, P. Tsiakaras, S. Song, Appl. Catal. B 2020, 277, 119249.
 
L. Zhu, M. Gao, C. K. N. Peh, G. W. Ho, Mater. Horiz. 2018, 5, 323-343;
W. Li, Z. Li, K. Bertelsmann, D. E. Fan, Adv. Mater. 2019, 31, 1900720;
H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280-2297;
P. Chen, Y. Ma, Z. Zheng, C. Wu, Y. Wang, G. Liang, Nat. Commun. 2019, 10, 1192;
F. Zhang, X. Han, Y. Hu, S. Wang, S. Liu, X. Pan, H. Wang, J. Ma, W. Wang, S. Li, Q. Wu, H. Shen, X. Yu, Q. Yuan, H. Liu, Adv. Sci. 2019, 6, 1801507.
X. Wu, M. E. Robson, J. L. Phelps, J. S. Tan, B. Shao, G. Owens, H. Xu, Nano Energy 2019, 56, 708-715.
 
G. Litwinienko, K. U. Ingold, Acc. Chem. Res. 2007, 40, 222-230;
K. Lv, X. Guo, X. Wu, Q. Li, W. Ho, M. Li, H. Ye, D. Du, Appl. Catal. B 2016, 199, 405-411.
 
Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li, X. Du, Nat. Commun. 2020, 11, 1731;
R. Shi, J. Guo, X. Zhang, G. I. N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Nat. Commun. 2020, 11, 3028.
Y. Shimoyama, T. Ishizuka, H. Kotani, T. Kojima, ACS Catal. 2019, 9, 671-678.
A. H. Mahvi, M. Ghanbarian, S. Nasseri, A. Khairi, Desalination 2009, 239, 309-316.
 
Y. Liu, Y. Zhu, J. Xu, X. Bai, R. Zong, Y. Zhu, Appl. Catal. B 2013, 142-143, 561-567;
C. Feng, Z. Chen, J. Jing, J. Hou, J. Mater. Chem. C 2020, 8, 3000-3009;
Z. Li, X. Meng, J. Hazard. Mater. 2020, 399, 1-11;
R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. A. Lopez-Sanchez, R. Bechstein, C. J. Kiely, G. J. Hutchings, F. Besenbacher, ACS Nano 2012, 6, 6284-6292.
S. Wang, L. Shang, L. Li, Y. Yu, C. Chi, K. Wang, J. Zhang, R. Shi, H. Shen, G. I. Waterhouse, S. Liu, J. Tian, T. Zhang, H. Liu, Adv. Mater. 2016, 28, 8379-8387.
 
F. Q. Wang, M. Hu, Q. Wang, J. Mater. Chem. A 2019, 7, 6259-6266;
D. Suh, C. M. Moon, D. Kim, S. Baik, Adv. Mater. 2016, 28, 7220-7227;
P. A. Advincula, A. C. de Leon, B. J. Rodier, J. Kwon, R. C. Advincula, E. B. Pentzer, J. Mater. Chem. A 2018, 6, 2461-2467.
L. Suhadolnik, A. Pohar, B. Likozar, M. Čeh, Chem. Eng. J. 2016, 303, 292-301.
B. H. J. Bielski, D. E. Cabelli, Int. J. Radiat. Biol. 1991, 59, 291-319.
S. Navalon, M. de Miguel, R. Martin, M. Alvaro, H. Garcia, J. Am. Chem. Soc. 2011, 133, 2218-2226.
 
P. Christopher, H. Xin, A. Marimuthu, S. Linic, Nat. Mater. 2012, 11, 1044-1050;
T. L. Thompson, J. T. Yates, J. Phys. Chem. B 2005, 109, 18230-18236;
Z. Zhang, J. T. Yates, Jr., J. Phys. Chem. C 2010, 114, 3098-3101.
M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 2015, 6, 6731.
R. Schmidt, D. C. Sinclair, Chem. Mater. 2010, 22, 6-8.

Auteurs

Huining Huang (H)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.

Run Shi (R)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Xuerui Zhang (X)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

Jiaqing Zhao (J)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

Chenliang Su (C)

International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.

Tierui Zhang (T)

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

Classifications MeSH