Photothermal-Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper.
large scale application
multifunctional bilayer paper
photocatalysis
photothermal
triphase system
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
11 Oct 2021
11 Oct 2021
Historique:
received:
02
08
2021
pubmed:
11
8
2021
medline:
11
8
2021
entrez:
10
8
2021
Statut:
ppublish
Résumé
Photocatalysis as one of the future environment technologies has been investigated for decades. Despite great efforts in catalyst engineering, the widely used powder dispersion and photoelectrode systems are still restricted by sluggish interfacial mass transfer and chemical processes. Here we develop a scalable bilayer paper from commercialized TiO
Identifiants
pubmed: 34374187
doi: 10.1002/anie.202110336
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22963-22969Subventions
Organisme : national key projects for fundamental research and development of china
ID : 2018YFB1502002
Organisme : national natural science foundation of china
ID : 51825205, 51772305
Organisme : national natural science foundation of china
ID : 21902168
Organisme : natural science foundation of beijing municipality
ID : 2191002
Organisme : strategic priority research program of the chinese academy of sciences
ID : XDB17000000
Organisme : royal society-newton advanced fellowship
ID : NA170422
Organisme : international partnership program of chinese academy of sciences
ID : GJHZ201974
Organisme : youth innovation promotion association of the chinese academy of sciences
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
V. K. Sharma, R. Zboril, R. S. Varma, Acc. Chem. Res. 2015, 48, 182-191;
M. J. Klemes, L. P. Skala, M. Ateia, B. Trang, D. E. Helbling, W. R. Dichtel, Acc. Chem. Res. 2020, 53, 2314-2324;
K. M. M. Pärnänen, C. N. D. Rocha, D. Kneis, T. U. Berendonk, D. Cacace, T. T. Do, C. Elpers, D. F. Kassinos, I. Henriques, T. Jaeger, A. Karkman, J. L. Martinez, S. G. Michael, I. M. Kordatou, K. O. Sullivan, S. R. Mozaz, T. Schwartz, H. Sheng, H. Sørum, R. D. Stedtfeld, J. M. Tiedje, S. V. D. Giustina, F. Walsh, I. V. Moreira, M. Virta, C. M. Manaia, Sci. Adv. 2019, 5, eaau9124.
A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278;
Y. Li, W. Cui, L. Liu, R. Zong, W. Yao, Y. Liang, Y. Zhu, Appl. Catal. B 2016, 199, 412-423;
P. V. Kamat, ACS Energy Lett. 2017, 2, 1586-1587;
K.-i. Katsumata, C. E. J. Cordonier, T. Shichi, A. Fujishima, J. Am. Chem. Soc. 2009, 131, 3856-3857.
Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302-11336;
W. Wang, M. O. Tade, Z. Shao, Chem. Soc. Rev. 2015, 44, 5371-5408;
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69-96;
S. Ghosh, N. A. Kouame, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, P. Beaunier, F. Goubard, P. H. Aubert, H. Remita, Nat. Mater. 2015, 14, 505-511;
C. Liu, D. Kong, P. C. Hsu, H. Yuan, H. W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm, Y. Cui, Nat. Nanotechnol. 2016, 11, 1098-1104.
S. Chen, H. Wang, Z. Kang, S. Jin, X. Zhang, X. Zheng, Z. Qi, J. Zhu, B. Pan, Y. Xie, Nat. Commun. 2019, 10, 788;
R. Dittmeyer, M. Klumpp, P. Kant, G. Ozin, Nat. Commun. 2019, 10, 1818;
W. Fan, B. Zhang, X. Wang, W. Ma, D. Li, Z. Wang, M. Dupuis, J. Shi, S. Liao, C. Li, Energy Environ. Sci. 2020, 13, 238-245;
R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2017, 139, 4486-4492.
A. Li, Q. Cao, G. Zhou, B. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 2019, 58, 14549-14555;
Angew. Chem. 2019, 131, 14691-14697;
L. Chen, X. Feng, Chem. Sci. 2020, 11, 3124-3131;
Y. Wang, R. Shi, L. Shang, G. I. N. Waterhouse, J. Zhao, Q. Zhang, L. Gu, T. Zhang, Angew. Chem. Int. Ed. 2020, 59, 13057-13062;
Angew. Chem. 2020, 132, 13157-13162;
J. Li, G. X. Chen, Y. Y. Zhu, Z. Liang, A. Pei, C. L. Wu, H. X. Wang, H. R. Lee, K. Liu, S. Chu, Y. Cui, Nat. Catal. 2018, 1, 592-600.
X. Sheng, Z. Liu, R. Zeng, L. Chen, X. Feng, L. Jiang, J. Am. Chem. Soc. 2017, 139, 12402-12405;
H. Zhou, X. Sheng, J. Xiao, Z. Ding, D. Wang, X. Zhang, J. Liu, R. Wu, X. Feng, L. Jiang, J. Am. Chem. Soc. 2020, 142, 2738-2743.
Q. Shi, J. Ye, Angew. Chem. Int. Ed. 2020, 59, 4998-5001;
Angew. Chem. 2020, 132, 5030-5033;
R. Feng, W. Lei, G. Liu, M. Liu, Adv. Mater. 2018, 30, 1804770.
A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 2019, 31, 1807660;
Q. Guo, Z. Ma, C. Zhou, Z. Ren, X. Yang, Chem. Rev. 2019, 119, 11020-11041;
S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372-7408;
Angew. Chem. 2013, 125, 7516-7557.
D. Li, J. C.-C. Yu, V.-H. Nguyen, J. C. S. Wu, X. Wang, Appl. Catal. B 2018, 239, 268-279;
Z. Mo, K. Wang, H. Yang, Z. Ou, Y. Tong, T. Yu, Y. Wang, P. Tsiakaras, S. Song, Appl. Catal. B 2020, 277, 119249.
L. Zhu, M. Gao, C. K. N. Peh, G. W. Ho, Mater. Horiz. 2018, 5, 323-343;
W. Li, Z. Li, K. Bertelsmann, D. E. Fan, Adv. Mater. 2019, 31, 1900720;
H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280-2297;
P. Chen, Y. Ma, Z. Zheng, C. Wu, Y. Wang, G. Liang, Nat. Commun. 2019, 10, 1192;
F. Zhang, X. Han, Y. Hu, S. Wang, S. Liu, X. Pan, H. Wang, J. Ma, W. Wang, S. Li, Q. Wu, H. Shen, X. Yu, Q. Yuan, H. Liu, Adv. Sci. 2019, 6, 1801507.
X. Wu, M. E. Robson, J. L. Phelps, J. S. Tan, B. Shao, G. Owens, H. Xu, Nano Energy 2019, 56, 708-715.
G. Litwinienko, K. U. Ingold, Acc. Chem. Res. 2007, 40, 222-230;
K. Lv, X. Guo, X. Wu, Q. Li, W. Ho, M. Li, H. Ye, D. Du, Appl. Catal. B 2016, 199, 405-411.
Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li, X. Du, Nat. Commun. 2020, 11, 1731;
R. Shi, J. Guo, X. Zhang, G. I. N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Nat. Commun. 2020, 11, 3028.
Y. Shimoyama, T. Ishizuka, H. Kotani, T. Kojima, ACS Catal. 2019, 9, 671-678.
A. H. Mahvi, M. Ghanbarian, S. Nasseri, A. Khairi, Desalination 2009, 239, 309-316.
Y. Liu, Y. Zhu, J. Xu, X. Bai, R. Zong, Y. Zhu, Appl. Catal. B 2013, 142-143, 561-567;
C. Feng, Z. Chen, J. Jing, J. Hou, J. Mater. Chem. C 2020, 8, 3000-3009;
Z. Li, X. Meng, J. Hazard. Mater. 2020, 399, 1-11;
R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. A. Lopez-Sanchez, R. Bechstein, C. J. Kiely, G. J. Hutchings, F. Besenbacher, ACS Nano 2012, 6, 6284-6292.
S. Wang, L. Shang, L. Li, Y. Yu, C. Chi, K. Wang, J. Zhang, R. Shi, H. Shen, G. I. Waterhouse, S. Liu, J. Tian, T. Zhang, H. Liu, Adv. Mater. 2016, 28, 8379-8387.
F. Q. Wang, M. Hu, Q. Wang, J. Mater. Chem. A 2019, 7, 6259-6266;
D. Suh, C. M. Moon, D. Kim, S. Baik, Adv. Mater. 2016, 28, 7220-7227;
P. A. Advincula, A. C. de Leon, B. J. Rodier, J. Kwon, R. C. Advincula, E. B. Pentzer, J. Mater. Chem. A 2018, 6, 2461-2467.
L. Suhadolnik, A. Pohar, B. Likozar, M. Čeh, Chem. Eng. J. 2016, 303, 292-301.
B. H. J. Bielski, D. E. Cabelli, Int. J. Radiat. Biol. 1991, 59, 291-319.
S. Navalon, M. de Miguel, R. Martin, M. Alvaro, H. Garcia, J. Am. Chem. Soc. 2011, 133, 2218-2226.
P. Christopher, H. Xin, A. Marimuthu, S. Linic, Nat. Mater. 2012, 11, 1044-1050;
T. L. Thompson, J. T. Yates, J. Phys. Chem. B 2005, 109, 18230-18236;
Z. Zhang, J. T. Yates, Jr., J. Phys. Chem. C 2010, 114, 3098-3101.
M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 2015, 6, 6731.
R. Schmidt, D. C. Sinclair, Chem. Mater. 2010, 22, 6-8.