Sterilization of sealed PVDF pouches containing decellularized scaffold by electrical stimulation.
decellularized human dermal skin tissues
electrical stimulation
polyvinylidene fluoride pouch
sterility assurance level
tissue engineering products
wet sterilization
Journal
Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
revised:
26
07
2021
received:
24
03
2021
accepted:
04
08
2021
pubmed:
11
8
2021
medline:
5
11
2021
entrez:
10
8
2021
Statut:
ppublish
Résumé
A terminal sterilization process for tissue engineering products, such as allografts and biomaterials is necessary to ensure complete removal of pathogenic microorganisms such as the bacteria, fungi, and viruses. However, it can be difficult to sterilize allografts and artificial tissue models packaged in wet conditions without deformation. In this study, we investigated the sterilization effects of electrical stimulation (ES) and assessed its suitability by evaluating sterility assurance levels in pouches at a constant current. Stability of polyvinylidene fluoride pouches was determined by a sterility test performed after exposure to five microorganisms (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans) for 5 days; the sterility test was also performed with decellularized human dermal tissues inoculated with the five microorganisms. Sterilization using ES inactivated microorganisms both inside and outside of sealed pouches and caused no damage to the packaged tissue. Our results support the development of a novel system that involves ES sterilization for packaging of implantable biomaterials and human derived materials.
Identifiants
pubmed: 34374222
doi: 10.1002/biot.202100156
doi:
Substances chimiques
Polyvinyls
0
polyvinylidene fluoride
24937-79-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100156Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Saginur, R., StDenis, M., Ferris, W., Aaron, S. D., Chan, F., Lee, C., & Ramotar, K. (2006). Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrobial Agents and Chemotherapy, 50, 55-61. https://doi.org/10.1128/AAC.50.1.55-61.2006
Sandvik, E. L., McLeod, B. R., Parker, A. E., & Stewart, P. S. (2013). Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PloS one, 8, e55118. https://doi.org/10.1371/journal.pone.0055118
Galante, R., Pinto, T. J. A., Colaço, R., & Serro, A. P. (2018). Sterilization of hydrogels for biomedical applications: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 2472-2492. https://doi.org/10.1002/jbm.b.34048
Food and Drug Administration (FDA). (2018). Submission and Review of Sterility Information in Premarket Notification (510 (k)) Submissions for Devices Labeled as Sterile. www.fda.gov/downloads/ucm109897.pdf
Tipnis, N. P., & Burgess, D. J. (2018). Sterilization of implantable polymer-based medical devices: A review. International Journal of Pharmaceutics, 544, 455-460. https://doi.org/10.1016/j.ijpharm.2017.12.003
Kim, H. -L., Lee, J. H., Lee, M. H., Kim, H. H., Kim, J., Han, I., Park, B. J., Kim, J. K., Han, D. W. S., Kim, H., & Park, J. -C. (2011). Direct-current treatment as a safe sterilization method for electrospun biodegradable polymer. Tissue Engineering and Regenerative Medicine, 8, 320-325.
Dai, Z., Ronholm, J., Tian, Y., Sethi, B., & Cao, X. (2016). Sterilization techniques for biodegradable scaffolds in tissue engineering applications. Journal of Tissue Engineering, 7, 1-13. https://doi.org/10.1177/2041731416648810
Harrell, C. R., Djonov, V., Fellabaum, C., & Volarevic, V. (2018). Risks of using sterilization by gamma radiation: The other side of the coin. International Journal of Medical Sciences, 15, 274. https://doi.org/10.7150/ijms.22644
Singh, R., Singh, D., & Singh, A. (2016). Radiation sterilization of tissue allografts: A review. Journal of Tissue Engineering, 8(4), 355-369. https://doi.org/10.4329/wjr.v8.i4.355
Chau, T. T., Kao, K. C., Blank, G., & Madrid, F. (1996). Microwave plasmas for low-temperature dry sterilization. Biomaterials, 17(13), 1273-1277. https://doi.org/10.1016/s0142-9612(96)80003-2
Dion, M,. & Parker, W. (2013). Steam sterilization principles. Pharmaceutical Engineering, 33, 1-8. https://www.ispe.gr.jp/ISPE/02_katsudou/pdf/201504_en.pdf
Reineke, K., Schottroff, F., Meneses, N., & Knorr, D. (2015). Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process. Frontiers in Microbiology, 6, 400. https://doi.org/10.3389/fmicb.2015.00400
Valente, T. A. M., Silva, D. M., Gomes, P. S., Fernandes, M. H., Santos, J. D., & Sencadas, V. (2016). Effect of sterilization methods on electrospun poly (lactic acid)(PLA) fiber alignment for biomedical applications. ACS Applied Materials & Interfaces, 8, 3241-3249. https://doi.org/10.1021/acsami.5b10869
Kim, Y. W., Subramanian, S., Gerasopoulos, K., Ben-Yoav, H., Wu, H. -C., Quan, D., Carter, K., Meyer, M. T., Bentley, W. E., & Ghodssi, R. (2015). Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. npj Biofilms and Microbiomes, 1, 1-8. https://doi.org/10.1038/npjbiofilms.2015.16
ISO/TC 19930 (2017). Guidance on aspects of a risk-based approach to assuring sterility of terminally sterilized, single-use health care product that is unable to withstand processing to achieve maximally a sterility assurance level of 10−6.
Bugno, A., Saes, D. P. S., Almodovar, A. A. B., Dua, K., Awasthi, R., Ghisleni, D. D. M., Hirota, M. T., de Oliveira, W. A., & de Jesus Andreoli Pinto, T. (2018). Performance survey and comparison between rapid sterility testing method and pharmacopoeia sterility test. Journal of Pharmaceutical Innovation, 13, 27-35. https://doi.org/10.1007/s12247-017-9303-z
Sutton, S. (2011). Rapid Sterility Testing. (Eds: M. Moldenhauer) PDA/DHI Publishing, Bethesda, MD. The sterility tests pp. 7-24.
U.S. Pharmacopeia in 2018 United States Pharmacopeia and National Formulary, USP 41-NF 36. U.S. Pharmacopeial Convention, Rockville, MD 2018, USP<71>Sterility tests, p 5984-5991.
Chang, Z., Li, C., Wang, Y., Chen, B., Fu, L., Zhu, Y., Zhang, L., Wu, Y., & Huang, W. (2016). A lithium ion battery using an aqueous electrolyte solution. Scientific Reports, 6, 28421. https://doi.org/10.1038/srep28421
Islam, A., Chapin, K., Moore, E., Ford, J., Rimnac, C., & Akkus, O. (2016). Gamma radiation sterilization reduces the high-cycle fatigue life of allograft bone. Clinical Orthopaedics and Related Research, 474, 827-835. https://doi.org/10.1007/s11999-015-4589-y
Bailey, A. J. (1967). Irradiation-induced changes in the denaturation temperature and intermolecular cross-linking of tropocollagen. Radiation Research, 31, 206-214. https://doi.org/10.2307/3572321
Knaepler, H., Garrel, T., Seipp, H. M., & Ascherl, R. (1992). Experimental studies of thermal disinfection and sterilization of allogeneic bone transplants and their effects on biological viability. Der Unfallchirurg, 95, 477-484.
Ronen, A., Duan, W., Wheeldon, I., Walker, S., & Jassby, D. (2015). Microbial attachment inhibition through low-voltage electrochemical reactions on electrically conducting membranes. Environmental Science & Technology, 21, 12741-12750. https://doi.org/10.1021/acs.est.5b01281
Debiemme-Chouvy, C., & Cachet, H. (2018). Electrochemical (pre)treatments to prevent biofouling. Current Opinion in Electrochemistry, 11, 48-54. https://doi.org/10.1016/j.coelec.2018.07.006
Dauben, T. J., Ziebart, J., Bender, T., Zaatreh, S., Kreikemeyer, B., & Bader, R. (2016). A novel in vitro system for comparative analyses of bone cells and bacteria under electrical stimulation. BioMed Research International, 2016, 5178640. https://doi.org/10.1155/2016/5178640
Stepanova, O., Rybalchenko, O., Astafiev, A., Orlova, O., Kudryavtsev, A., & Kapustina, V. (2016). A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air. Journal of Applied Physics, 120, 063302. https://doi.org/10.1063/1.4959992
Thamaraiselvan, C., Ronen, A., Lerman, S., Balaish, M., Ein-Eli, Y., & Dosoretz, C. G. (2018). Low voltage electric potential as a driving force to hinder biofouling in self-supporting carbon nanotube membranes. Water Research, 129, 143-153. https://doi.org/10.1016/j.watres.2017.11.004
Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101, 514-525. https://doi.org/10.1111/j.1365-2672.2005.02736.x
Yung, P. T., Lester, E., & Ponce, A. (2020). Quantitative and fast Sterility Assurance testing of Surfaces by enumeration of Germinable endospores. Scientific Reports, 10, 1-10. https://doi.org/10.1038/s41598-019-57175-3
Guitton, E., Faurie, A., Lavillatte, S., Chaumeil, T., Gaboriaud, P., Bussière, F., Laurent, F., Lacroix-Lamandé, S., Guabiraba, R., & Schouler, C. (2020). Production of germ-free fast-growing broilers from a commercial line for microbiota studies. Journal of Visualized Experiments,160, e61148. https://doi.org/10.3791/61148
Sakhno, N. G., Gunar, O. V., Roshchina, M. V., Kolosova, L. V., & Grigor'eva, V. E. (2018). Isolation of anaerobic bacteria during quality analysis of medicinal products. Pharmaceutical Chemistry Journal, 52, 569-572. https://doi.org/10.1007/s11094-018-1861-y
Doherty, M. J., Mollan, R., & Wilson, D. (1993). Effect of ethylene oxide sterilization on human demineralized bone. Biomaterials, 14, 994-998. https://doi.org/10.1016/0142-9612(93)90191-4
Fölsch, C., Mittelmeier, W., Bilderbeek, U., Timmesfeld, N., von Garrel, T., & Matter, H. P. (2012). Effect of storage temperature on allograft bone. Transfusion Medicine and Hemotherapy, 39, 36-40. https://doi.org/10.1159/000335647
Hundepool, C. A., Nijhuis, T. H. J., Kotsougiani, D., Friedrich, P. F., Bishop, A. T., & Shin, A. Y. (2017). Optimizing decellularization techniques to create a new nerve allograft: an in vitro study using rodent nerve segments. Neurosurgical Focus, 42(3), E4. https://doi.org/10.3171/2017.1.FOCUS16462
Hundepool, C. A., Bulstra, L. F., Kotsougiani, D., Friedrich, P. F., Hovius, S. E. R., Bishop, A. T., & Shin, A. Y. (2018). Comparable functional motor outcomes after repair of peripheral nerve injury with an elastase-processed allograft in a rat sciatic nerve model. Microsurgery, 38, 772-779. https://doi.org/10.1002/micr.30371
Asadi, M. R., & Torkaman, G. (2014). Bacterial inhibition by electrical stimulation. Advances in Wound Care, 3, 91-97. https://doi.org/10.1089/wound.2012.0410
da Silva F. A. G. Jr, Alcaraz-Espinoza, J. J., da Costa, M. M., & de Oliveira, H. P. (2019). Low intensity electric field inactivation of Gram-positive and Gram-negative bacteria via metal-free polymeric composite. Materials Science and Engineering: C, 99, 827-837. https://doi.org/10.1016/j.msec.2019.02.027
Dehghani, S., Rezaee, A., & Hosseinkhani, S. (2018). Effect of alternating electrical current on denitrifying bacteria in a microbial electrochemical system: biofilm viability and ATP assessment. Environmental Science and Pollution Research, 25, 33591-33598. https://doi.org/10.1007/s11356-018-3170-0
Felipe, F. S., Ying-Ying, H., & Michael, R. H. (2013). Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Patents on Anti-Infective Drug Discovery, 8, 108-120. https://doi.org/10.2174/1574891x113089990012
Barbosa, J. C., Dias, J. P., Lanceros-Méndez, S., & Costa, C. M. (2018). Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Membranes (Basel), 8(3), 45. https://doi.org/10.3390/membranes8030045
Wang, L., Wang, Z., Sun, Y., Liang, X., & Xiang, H. (2019). Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. Journal of Membrane Science, 572, 512-519. https://doi.org/10.1016/j.memsci.2018.11.041
Chambers, D. C., Enever, D., Lawrence, S., Sturm, M. J., Herrmann, R., Yerkovich, S., Musk, M., & Hopkins, P. M. A. (2017). Mesenchymal stromal cell therapy for chronic lung allograft dysfunction: Results of a first-in-man study. STEM CELLS Translational Medicine. 6, 1152-1157. https://doi.org/10.1002/sctm.16-0372
von Woedtke, T., & Kramer, A. (2008). The limits of sterility assurance. GMS Krankenhaushygiene Interdisziplinar, 3, 1863.
Ignatieva, N., Zakharkina, O., Dadasheva, A., Shekhter, A., Sviridov, A., & Lunin, V. (2019). Transformation of the dermal collagen framework under laser heating. Journal of Biophotonics, 12, e201960024. https://doi.org/10.1002/jbio.201960024
Arnoczky, S. P., & Aksan, A. (2000). Thermal modification of connective tissues: basic science considerations and clinical implications. Journal of the American Academy of Orthopaedic Surgeons, 8, 305-313. https://doi.org/10.5435/00124635-200009000-00004
Lin, M., Zhai, X., Wang, S., Wang, Z., Xu, F., & Lu, T. J. (2012). Influences of supra-physiological temperatures on microstructure and mechanical properties of skin tissue. Medical Engineering & Physic, 34, 1149-1156. https://doi.org/10.1016/j.medengphy.2011.12.003