Ability to regulate immunity of mesenchymal stem cells in the treatment of traumatic brain injury.


Journal

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
ISSN: 1590-3478
Titre abrégé: Neurol Sci
Pays: Italy
ID NLM: 100959175

Informations de publication

Date de publication:
Mar 2022
Historique:
received: 02 06 2020
accepted: 04 06 2021
pubmed: 11 8 2021
medline: 24 2 2022
entrez: 10 8 2021
Statut: ppublish

Résumé

Traumatic brain injury (TBI) is characterized by broad clinical symptoms in brain insult by external damages to the skull. TBI potentially leads to severe physical, cognitive, and emotional impairment. The complex biochemical reactions of inflammatory processes in TBI significantly influence brain function and clinical sequelae's overall severity. Mesenchymal stem cell therapy has become a promising therapeutic field of treatment for serious injuries due to its ability to regulate the inflammatory microenvironment. In this study, we aimed to investigate MSC's anti-inflammatory ability through regulating leukocyte, neutrophils, and inflammatory factors (IL-6, CRP, and TNF-a), thereby reducing the trauma in the TBI. Biological effects of autologous MNC and MSC cell transplantation have been studied in 40 patients with molded TBI, after being filtered according to appropriate criteria. All patients initially received MNCs and subsequently MSCs (both intravenously) followed by continuous monitoring during treatment (2 months) with clinical cognitive indicators. The results after transplantation MSC indicated that the majority of patients experienced improved health function in different degrees during the follow-up period. Lower serum levels of inflammatory factors, leukocytes, and neutrophils population were detected following the transplantation compared with the levels prior to treatment and with the control patients. No severe symptoms were observed in patients after transplantation, despite 3-4 death cases in each group. Overall, the present study suggests that transplantation of MSC possibly regulates inflammatory factors and appears to be safe in TBI treatment.

Identifiants

pubmed: 34374864
doi: 10.1007/s10072-021-05529-z
pii: 10.1007/s10072-021-05529-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2157-2164

Informations de copyright

© 2021. Fondazione Società Italiana di Neurologia.

Références

Liao Y, Liu P, Guo F, Zhang Z-Y, Zhang Z (2013) Oxidative burst of circulating neutrophils following traumatic brain injury in human. PloS one 8(7):e68963–e68963. https://doi.org/10.1371/journal.pone.0068963
doi: 10.1371/journal.pone.0068963 pubmed: 23894384 pmcid: 3722225
Reis C, Gospodarev V, Reis H, Wilkinson M, Gaio J, Araujo C, Chen S, Zhang JH (2017) Traumatic brain injury and stem cell: pathophysiology and update on recent treatment modalities. Stem Cells Int 2017:6392592–6392592. https://doi.org/10.1155/2017/6392592
doi: 10.1155/2017/6392592 pubmed: 28852409 pmcid: 5568618
Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. British journal of pharmacology 147 Suppl 1 (Suppl 1):S232-240. https://doi.org/10.1038/sj.bjp.0706400
Bains M (1822) Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochimica et biophysica acta 5:675–684. https://doi.org/10.1016/j.bbadis.2011.10.017
doi: 10.1016/j.bbadis.2011.10.017
Daglas M, Draxler DF, Ho H, McCutcheon F, Galle A, Au AE, Larsson P, Gregory J, Alderuccio F, Sashindranath M, Medcalf RL (2019) Activated CD8+ T cells cause long-term neurological impairment after traumatic brain injury in mice. Cell Rep 29(5):1178-1191.e1176. https://doi.org/10.1016/j.celrep.2019.09.046
doi: 10.1016/j.celrep.2019.09.046 pubmed: 31665632
Kumar RG, Boles JA, Wagner AK (2015) Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehab 30(6):369–381. https://doi.org/10.1097/htr.0000000000000067
doi: 10.1097/htr.0000000000000067
Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, Gali A, Sleiman E (2017) Mesenchymal stem cells in the treatment of traumatic brain injury. 8 (28). https://doi.org/10.3389/fneur.2017.00028
Harting M, Jimenez F, Xue H, Fischer U, Baumgartner J, Dash P, Cox C (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197. https://doi.org/10.3171/2008.9.JNS08158
doi: 10.3171/2008.9.JNS08158 pubmed: 19301973 pmcid: 2889620
Kanof ME, Smith PD, Zola H (1996) Isolation of whole mononuclear cells from peripheral blood and cord blood. 19 (1):7.1.1-7.1.7. https://doi.org/10.1002/0471142735.im0701s19
Huang P, Freeman WD, Edenfield BH, Brott TG, Meschia JF, Zubair AC (2019) Safety and efficacy of intraventricular delivery of bone marrow-derived mesenchymal stem cells in hemorrhagic stroke model. Sci Rep 9(1):5674. https://doi.org/10.1038/s41598-019-42182-1
doi: 10.1038/s41598-019-42182-1 pubmed: 30952961 pmcid: 6450980
Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV (2020) Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Therapeutics 26(6):603–615. https://doi.org/10.1111/cns.13378
doi: 10.1111/cns.13378
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905
doi: 10.1080/14653240600855905
Middleton PM (2012) Practical use of the Glasgow coma scale; a comprehensive narrative review of GCS methodology. Australasian emergency nursing journal : AENJ 15(3):170–183. https://doi.org/10.1016/j.aenj.2012.06.002
doi: 10.1016/j.aenj.2012.06.002 pubmed: 22947690
Ortiz G (2014) Sacco R National Institutes of Health Stroke Scale (NIHSS). In
Mahoney FI, Barthel DW (1965) Functional evaluation: the Barthel Index. Maryland State Med J 14:61–65
Schneider Soares FM, Menezes de Souza N, Libório Schwarzbold M, Paim Diaz A, Costa Nunes J, Hohl A, Abreu Nunes, da Silva P, Vieira J, Lisboa de Souza R, Moré Bertotti M, Schoder Prediger RD, Neves Linhares M, Bafica A, Walz R (2012) Interleukin-10 is an independent biomarker of severe traumatic brain injury prognosis. Neuroimmunomodulation 19(6):377–385. https://doi.org/10.1159/000342141
doi: 10.1159/000342141 pubmed: 23075771
Vaibhav K, Braun M, Alverson K, Khodadadi H, Kutiyanawalla A, Ward A, Banerjee C, Sparks T, Malik A, Rashid MH, Khan MB, Waters MF, Hess DC, Arbab AS, Vender JR, Hoda N, Baban B, Dhandapani KM (2020) Neutrophil extracellular traps exacerbate neurological deficits after traumatic brain injury. 6 (22):eaax8847. https://doi.org/10.1126/sciadv.aax8847%J Science Advances
Cox CS Jr, Hetz RA, Liao GP, Aertker BM, Ewing-Cobbs L, Juranek J, Savitz SI, Jackson ML, Romanowska-Pawliczek AM, Triolo F, Dash PK, Pedroza C, Lee DA, Worth L, Aisiku IP, Choi HA, Holcomb JB, Kitagawa RS (2017) Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem cells (Dayton, Ohio) 35(4):1065–1079. https://doi.org/10.1002/stem.2538
doi: 10.1002/stem.2538
Clark RS, Schiding JK, Kaczorowski SL, Marion DW, Kochanek PM (1994) Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J Neurotrauma 11(5):499–506. https://doi.org/10.1089/neu.1994.11.499
doi: 10.1089/neu.1994.11.499 pubmed: 7861443
Venetsanou K, Vlachos K, Moles A, Fragakis G, Fildissis G, Baltopoulos G (2007) Hypolipoproteinemia and hyperinflammatory cytokines in serum of severe and moderate traumatic brain injury (TBI) patients. Europ Cytokine Net 18(4):206–209. https://doi.org/10.1684/ecn.2007.0112
doi: 10.1684/ecn.2007.0112
Ott L, McClain CJ, Gillespie M, Young B (1994) Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma 11(5):447–472. https://doi.org/10.1089/neu.1994.11.447
doi: 10.1089/neu.1994.11.447 pubmed: 7861440
Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A (2017) Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem 60(3):327–338. https://doi.org/10.1007/s13765-017-0285-9
doi: 10.1007/s13765-017-0285-9

Auteurs

Quang Hien Nguyen Viet (QHN)

Anesthesiology & Recovery Department, Hue Central Hospital, 16 Le Loi St, Hue City, Vietnam.

Viet Quang Nguyen (VQ)

Anesthesiology & Recovery Department, Hue Central Hospital, 16 Le Loi St, Hue City, Vietnam.

Duy Minh Le Hoang (DM)

Biology Department, Hue University, 03 Le Loi St, Hue City, Vietnam.

Thuy Hoa Phan Thi (THP)

Hematology Department, Hue Central Hospital, Hue, Vietnam.

Huu Phuc Tran (HP)

Biology Department, Hue University, 03 Le Loi St, Hue City, Vietnam.

Cam Ha Che Thi (CHC)

Biology Department, Hue University, 03 Le Loi St, Hue City, Vietnam. chethicamha@husc.edu.vn.
Hue Central Hospital, Hue, Vietnam. chethicamha@husc.edu.vn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH